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Abstract— This paper revisits the classical set membership
estimation (SME) algorithm for linear control systems under
bounded, stochastic disturbances and provides non-asymptotic
guarantees. Most of the literature analyzing the non-asymptotic
behaviors of SME only considers linear regression under
stochastic and bounded disturbances, which ignores the corre-
lation between current and history states introduced by system
dynamics. Recently, there has been a renewed interest in rigoriz-
ing SME’s non-asymptotic analysis for control systems by lever-
aging recent statistical learning techniques. For example, [1] re-
establishes SME’s convergence for disturbances tightly bounded
by a general convex set, while [2] proposes a convergence rate
under more restrictive disturbances: the disturbance’s support
should be an ℓ∞ ball. This paper generalizes the convergence
rates in [2] to allow disturbances bounded by general convex
sets as in [1]. In addition, we further relax the assumption
from the one in [1] to establish more general convergence
and convergence rate guarantees. Our theoretical bounds are
validated by several numerical experiments.

This supplementary material provides additional
proofs in the appendix.

I. INTRODUCTION

System identification enjoys a long history of research [3],
[4]. Recent years have witnessed a revived interest in the non-
asymptotic analysis of system identification algorithms for
control dynamics through the lens of statistical learning [5],
[6], [7], [8]. For example, consider a linear control system

xt+1 = A∗xt +B∗ut + wt, (1)

where (A∗, B∗) are unknown system parameters, xt ∈ Rnx

is the state, ut ∈ Rnu is the control input, and wt ∈ Rnx is
the process noise/disturbance. Least square estimator (LSE)
is a widely adopted point estimator of (A∗, B∗) and its
non-asymptotic convergence rates under i.i.d. noises wt have
been extensively studied recently [5], [6], [7], [8].1 This has
further ignited significant research into the non-asymptotic
analysis of various LSE-learning-based control algorithms,
e.g, regrets [9], sample complexity [10], etc.

Besides LSE, set membership estimation (SME) is another
popular estimation algorithm in the control literature [11],
[12], [13], [14], [15]. Compared with the point estimator
LSE, SME is a set estimator that focuses on bounded noises
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1While LSE’s convergence rates for linear regression have long been
known, its rates for control systems were developed more recently due to the
complications from correlations between current and past states in control
dynamics [7], [6].

wt ∈ W and leverages the set W to characterize the uncer-
tainty set of A∗, B∗. SME is popular among robust adaptive
control as it effectively learns and refines uncertainty sets for
robust controllers, such as robust adaptive model predictive
control (RAMPC) [1], [14], robust adaptive control barrier
functions [16], etc.

Compared to LSE, SME has received relatively less at-
tention from the recent studies on learning-based control,
despite a rich history of stochastic analysis for convergence
(rates) [17], [18], [12]. A key distinction between previous
stochastic analysis of SME and recent learning-based control
lies in the persistent excitation (PE) conditions. Previously,
SME’s stochastic analysis consider linear regression, yt =
θ∗zt + wt, where zt is assumed to satisfy PE deterministi-
cally or almost surely [19], [18], [17], [1]. However, ensur-
ing deterministic PE is often challenging when combined
with other design objectives [20]. For example, RAMPC
controllers are modified by constrained optimizations to
guarantee PE [21], [1], [22].

In contrast, recent learning-based control literature reveals
that a more flexible framework by adding random noises
to control inputs, i.e., ut = πt(xt) + ηt, can guarantee
a stochastic PE condition2 with high probability [23] and
achieve optimal convergence rates for LSE [5], [6]. This
motivates SME analysis under the same framework [2], [24],
which is more challenging than the deterministic PE case
due to (i) the lack of closed-form expressions for the sizes
of SME’s uncertainty sets and (ii) the correlation among
{wt}t≥0 when conditioning on stochastic PE.3 To address
these challenges, [2] develops a novel stopping-time-based
analysis tool but under a stricter assumption than earlier SME
studies: the support W of wt must be a perfect ℓ∞ ball.

The major goal of this paper is to relax the restrictive
assumption on W in [2] to any convex set. The assumption
on the shape of W is restrictive because SME may fail
to converge under an outer-approximation of W [25], [1],
[2], [12]. Thus, one cannot simply outer-approximate an
arbitrary support set by an ℓ∞ ball to apply the results
in [2], which greatly limits the practicability. For example,
consider a power system with renewable generations as ran-
dom disturbances in different locations. Some locations may
have higher renewable generation capacity, while others have
lower capacity, so the support of the renewable generation

2This refers to the Block-Martingale-Small-Ball (BMSB) condition [6]
3The previous stochastic analysis of SME rely on the independence of

{wt}t≥0 [17], which no longer holds when conditioning on stochastic PE.
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profile is more likely to resemble a weighted ℓ∞ ball instead
of a perfect one. Thus, the results in [2] may not hold here.

Contributions. The major contribution of this paper is
analyzing SME’s convergence rates under general convex
and compact W, which bridges the gap between the as-
sumptions for SME’s convergence analysis [1] and those
for convergence rate analysis [2]. This work lays foundation
for future design and non-asymptotic analysis when apply-
ing SME to learning-based control. To establish the non-
asymptotic bounds, we first rely on the standard assumption
in the convergence literature [1], then propose a relaxed
assumption, which not only generalizes the applicability of
our bounds but also provides improved convergence rates
in certain cases. Further, compared with the convergence
rates in [2], our bound depends on an additional constant
ξ that reflects the geometric property of W as well as the
probability distribution of wt. Finally, we use simulation
examples to validate our theoretical guarantees.

Related works. SME is widely used for parameter
estimation (especially parameters’ uncertainty set estimation)
in system identification [26], [27], [28], [29], which is also
the focus of this paper. In particular, this paper is related to
the convergence and convergence rate analysis of SME for
stochastic linear regression problems, which enjoys extensive
research under the persistent excitation (PE) assumption [12],
[30], [17], [1].

It is worth mentioning that SME still applies for non-
stochastic noises as long as the noise bound wt ∈ W is
valid [11], [12], [13]. This attracts applications for SME
when the noises do not have nice statistical properties [22],
[14]. However, when it comes to non-asymptotic conver-
gence analysis, most literature considers stochastic noises to
simplify the analysis and to compare with other stochastic
system estimation methods [17], [1], [18].

Besides, there have been numerous variations of SME for
system identification. For example, there are computationally
efficient SME algorithms such as the optimal bounding
ellipsoid (OBE) approximation [31], [32] and the zonotopic
approximation [33], [34]. Further, SME has been applied to
nonlinear systems [24], [35], [36], time-varying systems [37],
[38], systems with unknown noise bounds [2], [39], switched
systems [40]. SME also enjoys wide applications to adaptive
control designs [41], [42], [1], [43], [44].

In addition to system identification, SME is widely
adopted in state estimation for output feedback systems [29],
[45], [46], [47], [48] and filtering [49], [50].

Notations. For two matrices M1 ∈ Rk×t,M2 ∈ Rk×r,
let (M1,M2) denote the concatenated matrix, and the same
applies to vector concatenation. Let || · ||F denote the Frobe-
nius norm of a matrix. Let || · ||p denote the ℓp vector norm
or Lp matrix norm for 1 ≤ p ≤ ∞. Let A∁ denote the
complement of event/set A. We use Õ(·) to hide logarithmic
terms. The interior of a set E is denoted by E̊, and the
boundary of E is denoted by ∂E. A ≻ B means that matrix
A − B is positive definite. ∀ p ∈ {1, 2,∞, F}, r > 0, and
any vector/matrix x, let Br

p(x) respectively denote the ℓ1-
norm/ℓ2-norm/ℓ∞-norm/Frobenius-norm ball with radius r

centered at x including the ℓp sphere Srp(x) with radius r
centered at x. If r = 1 and x = 0, we use Bp, Sp for
simplicity.

Mathematical preliminaries. In a probability space
(Ω,A,P), we say {Fi}i∈N is a filtration if ∀ i ∈ N, Fi is
a sub-σ-algebra of A and ∀ i ≤ j one has Fi ⊆ Fj . We
denote the σ-algebra generated by a collection of random
variables as σ{· · · }. A stochastic process {Xi}i∈N is said to
be adapted to the filtration {Fi}i∈N if ∀ i ∈ N, the random
variable Xi is an Fi-measurable function. Let τ be a random
variable taking values from [0,+∞). We say τ is a stopping
time if ∀t ≥ 0, we have {τ ≤ t} ∈ Ft.

II. PROBLEM FORMULATION

This paper considers a linear control system:

xt+1 = A∗xt +B∗ut + wt, t ≥ 0, (2)

where xt ∈ Rnx , ut ∈ Rnu , and wt ∈ Rnx respectively
denote the state, the control input, and the process noise
at time t ≥ 0. The system parameters A∗, B∗ in (2) are
unknown and to be estimated. For ease of notation, we denote
θ∗ = (A∗, B∗) ∈ Rnx×nz , zt = (x⊤

t , u
⊤
t )

⊤ ∈ Rnz , where
nz = nx + nu. Thus, the system (2) can be written as

xt+1 = θ∗zt + wt. (3)

This paper focuses on a specific estimation algorithm, set
membership estimation (SME), to quantify the uncertainty
of A∗, B∗. SME is mainly applicable when wt is bounded
and utilizes the bound of wt to construct the uncertainty sets
[11], [12], [13], [14], [15]. This paper studies stage-wise
bound wt ∈ W for simplicity, and leave the analysis for
more general bounds, e.g. energy constrained bounds across
all stages [28], as future work.

We review the SME algorithm in details below. Con-
sider a sequence of single-trajectory data, {xt, ut, xt+1}T−1

t=0 ,
generated from (2), where the horizon T can be unknown
beforehand. Let ΘT denote the remaining uncertainty set of
θ∗ after the T stages of data are revealed. ΘT generated by
SME, also called a membership set, is defined below:

ΘT =

T−1⋂
t=0

{
θ̂ ∈ Rnx×nz : xt+1 − θ̂zt ∈ W

}
. (4)

Basically, SME tries to rule out any θ̂ that is inconsistent with
the linear dynamics with bounded noises wt ∈ W. Notice
that θ∗ ∈ ΘT as long as wt ∈ W for all t ≤ T − 1.

SME is widely used in robust adaptive control to character-
ize and reduce the uncertainty sets used in robust controller
design. Besides, it is also observed from simulations that
SME tends to generate smaller uncertainty sets than LSE’s
confidence regions (see e.g. [2] and Section VI), which
explains the wide applications of SME to some extent.

Despite the applications and good performance of SME,
its convergence rate analysis for control dynamical systems
remain limited. Our goal in this paper is to further study
the convergence rate of SME by measuring the size of
uncertainty sets with their diameters as defined below.



Definition 1 (Diameter of a set of matrices). For a set
of matrices Θ ∈ Rnx×nz , we define its diameter to be
diam(Θ) := supθ1,θ2∈Θ ||θ1 − θ2||F .

In particular, when considering linear dynamical systems,
though [1] provides the diameter’s convergence guarantees
of SME for general convex set W, the best convergence rate
in the literature only holds when W is a ℓ∞ ball [2]. In the
following, we are going to generalize the convergence rates
in [2] to any convex set W as in [1].

Assumptions throughout this paper. We will introduce
two assumptions that are considered throughout this paper.
Firstly, we assume the stochastic properties of wt and the
convexity and compactness of set W.

Assumption 1 (Compactly and convexly supported i.i.d.
noise). The additive noise {wt}t≥0 are identically and inde-
pendently sampled from a compact and convex noise set W
with a non-empty interior (i.e. W̊ ̸= ∅) such that E(wt) = 0
and Cov (wt) = Σw ≻ 0.

Though SME does not need any stochastic properties of
wt to generate valid uncertainty sets that contain θ∗, the
i.i.d. assumption is standard in the literature when discussing
SME’s convergence rates for linear regression [17], [1], [18],
as well as LSE’s convergence rate analysis [10], [6]. Besides,
the convex and compact W is also commonly assumed in
SME’s literature [1], [17], [18], [29].

Our next assumption is based on the block-martingale
small-ball (BMSB) condition introduced in [6]. BMSB can
be viewed as a stochastic version of the persistent excitation
(PE) condition that is commonly assumed in the system
identification literature [1], [18], [17], [12]. This is because
both BMSB and PE require sufficient exploration in all
directions to learn accurate system parameters.

Definition 2 (BMSB condition [6]). For a filtration {Ft}t≥1

and an {Ft}t≥1-adapted stochastic process {Zt}t≥1 such
that Zt ∈ Rd, we say {Zt}t≥0 satisfies the (k,Γsb, p)-BMSB
condition for a positive integer k, a positive matrix Γsb, and
p ∈ [0, 1] if, for any fixed unit vector λ ∈ Rd, one has
1
k

∑k
i=1 P

(
|λ⊤Zt+i| ≥

√
λ⊤Γsbλ

∣∣∣Ft

) a.s.
≥ p for all t ≥ 1.

Assumption 2 (Bounded zt & the BMSB condition). ∃ bz
such that ∀ t ≥ 0, ||zt||2

a.s.
≤ bz . For the filtration {Ft}T−1

t=0 ,
where Ft := σ{w0, · · · , wt−1, z0, · · · , zt}, the adapte pro-
cess {zt}t≥0 satisfies the (1, σ2Inz , pz)-BMSB condition.

It has been shown in [8] that the BMSB condition can
be easily achieved by any stabilizing controller adding an
i.i.d. exploration noise with a positive definite covariance, i.e.
ut = π(xt)+ηt, where ηt is i.i.d. The bounded zt condition
can be naturally satisfied if the controller π(·) is bounded-
input-bounded-output stabilizing since our disturbances are
bounded (Sec 4.7 in [51]).

A classical assumption on tight bound W. Here, we re-
view a classical assumption on the tightness of W: pointwise
boundary-visiting noises [1]. This assumption is important
for the convergence of SME. Later, we will analyze con-
vergence rates based on this assumption in Section III, then

discuss how to relax this assumption in Section IV.

Assumption 3 (Pointwise boundary-visiting noise [1]).
∀ ϵ > 0, ∃ qw(ϵ) > 0 such that ∀ t ≥ 0, ∀w0 ∈ ∂W:
P
(
|w0 − wt| < ϵ

)
≥ qw(ϵ).

On “boundary-visiting-ness”: With the phrase “boundary
visiting,” we are not requiring the noise to have a non-
vanishing probability to reach exactly the boundary of W,
but to visit arbitrarily close to the boundary.

Next, we provide three examples on qw(·).

Example 1 (Weighted ℓ∞ ball). We consider
that wt follows a uniform distribution4 on W ={
w ∈ Rnx : maxi∈[nx]

{
1
ai
|wi|

}
≤ 1
}

for positive
constants a1, · · · , anx . In this case qw(ϵ) = O(ϵnx).

Example 2 (Weighted ℓ1 ball). We consider wt uniformly
distributed on W =

{
w ∈ Rnx :

∑nx

i=1
1
ai
|wi| ≤ 1

}
for

positive constants a1, · · · , anx
. In this case qw(ϵ) = O(ϵnx).

Example 3 (ℓ2 ball). We consider wt uniformly distributed
on W = Br

2(0) for fixed r > 0.In this case qw(ϵ) = O(ϵnx).
III. CONVERGENCE RATE UNDER ASSUMPTION 3

In this section, we propose a non-asymptotic estimation
error bound for the SME under the ϵ-ball boundary-visiting
noise Assumption 3 and discuss its implications.

Theorem 1. Under Assumptions 1, 2 and 3: ∀T > m >
0, δ > 0, one has

P (diam(ΘT ) > δ) ≤ T

m
Õ(n5/2

z )anz
2 exp(−a3m)︸ ︷︷ ︸

Term 1

+

Õ
(
(nxnz)

5/2
)
anxnz
4 [1− qw(

a1δ

4
)]⌈

T
m ⌉−1︸ ︷︷ ︸

Term 2

(5)

where a1 = 1
4σzpz , a2 = max{1, 64b2z

σ2p2
z
}, a3 = 1

8p
2
z , a4 =

max{1, 4bz
a1

}.

A detailed proof of Theorem 1 can be found in Appendix
A. It is similar to the proof of Theorem 2 in Section V
(Theorem 2 is more general and will be introduced in Section
IV).

On Inequality (5): Inequality (5) provides an upper
bound on the probability of the “large diameter event” i.e.
diam(ΘT ) > δ. Therefore, the smaller the upper bound is,
the better the SME performs in terms of estimation accuracy.
Notice that Inequality (5) involves two terms: Term 1
bounds the probability that PE does not hold, and Term 2
bounds the probability that the uncertainty set is still large
even though PE holds (refer to Lemmas 1 and 2 in Section V
since the proofs of Theorems 1,2 are based on similar ideas).

On the choices of m: Notice that Term 1 in (5) decays
exponentially in m yet increases with T , while Term 2
decays exponentially in T

m . To ensure a small upper bound
in (5), one can choose m at a scale of log T ≤ m ≤ T

4Though only uniform distribution is considered, other distributions such
as truncated Gaussian can also apply.



(hiding other constant factors for intuitions here). The best
bound induced by (5) is essentially the minimum of the upper
bound over m.

Though choosing m seems complicated and requires the
knowledge of T , it is worth emphasizing that the choice
of m only affects our theoretical bound but does not affect
the empirical performance of SME. Therefore, a suboptimal
choice of m will only increase the gap between our theory
and the actual empirical performance, but will not degrade
the empirical performance of SME.

On convergence rates. Theorem 1 can be converted
to convergence rates of diam(ΘT ). Since (5) depends on
qw(·), to provide explicit bounds as illustrating examples,
we consider qw(ϵ) = O(ϵp) for p > 0, which includes many
common distributions, e.g. Examples 1-3.

Corollary 1. If qw(ϵ) = O(ϵp) for any p ̸= 0, given m ≥
O(nz + log T − log ϵ), then with probability no less than
1− 2ϵ, one has

diam(ΘT ) ≤ Õ

((nxnz

T

)1/p)
Convergence rates for Examples 1-3 Recall that we have
shown qw(ϵ) = O (ϵnx) in Examples 1-3. By Corollary 1, we
have the convergence rate: diam(ΘT ) ≤ Õ

((
nxnz

T

)1/nx
)

.
Though this provides valid convergence rate bounds for
general convex W, these bounds are much worse than LSE’s
convergence rate 1√

T
and do not explain the promising

empirical performance of SME (see Section VI and [2]).
Therefore, in the next section, we will seek to improve the
convergence rate bounds of SME.

IV. CONVERGENCE RATE WITH RELAXED ASSUMPTION

This section provides a relaxed version of Assumption
3, which enables tighter convergence rate bounds in some
scenarios. In the following, Section IV-A will introduce
this relaxed version in Assumption 4. Then Section IV will
discuss the corresponding estimation error bound in Theorem
2, followed by discussions on the differences from Theorem
1 as well as examples.

A. A Relaxed Assumption on the Tightness of W
This subsection will introduce a relaxed version of As-

sumption 3 in Section II. Our assumption relies on supporting
half-spaces (SHS) and ϵ-slices induced by SHS for convex
sets, so we first review this concept below.

Definition 3 (Supporting half-spaces & ϵ-slices). Consider
a convex and compact set W ⊆ Rn with a non-empty interior
(i.e. W̊ ̸= ∅). For a boundary point c ∈ ∂W and a unit vector
h (i.e. ||h||2 = 1), we say the half-space

H(c, h) :=
{
x ∈ Rn : h⊤x ≥ h⊤c

}
is a supporting half-space (SHS) of W at point c with
normal vector h, if W ⊆ H(c, h).

Furthermore, ∀ ϵ > 0, we define the ϵ-slice of W induced
by H(c, h) below:

Sϵ
W(c, h) :=

{
x ∈ Rn : h⊤c+ ϵ ≥ h⊤x ≥ h⊤c

}
∩W.

(a) The ϵ-slice induced by H(c, h). (b) The ϵ-ball at c.

Fig. 1: (a) and (b) respectively demonstrate the ϵ-slice and
the ϵ-neighborhood of a boundary point c. In Figure 1(a),
the blue shaded half-space represents the SHS H(c, h), and
the orange area is the ϵ-slice induced by H(c, h). In Figure
1(b), the black-filled area is the ϵ-ball in Assumption 3 at c.
Observe that with the same ϵ, the ϵ-slice on the left tends to
be larger than the ϵ-ball on the right.

With Definition 3, we can present a relaxed version of
Assumption 3 as in Assumption 4 below.

Assumption 4 (ϵ-slice partial-boundary-visiting noise).
There exists a subset of boundary points C = {c1, · · · , cB} ⊆
∂W5, and a set of unit vectors H = {h1, · · · , hB} satisfying
the following properties.

(i) ∀ i ∈ {1, · · · , B}, H(ci, hi) is a SHS of W.

(ii)
B⋂
i=1

H(ci, hi) is a compact set.

(iii) ∀ ϵ > 0, ∃ pw(ϵ) > 0 such that ∀ t ≥ 0, ∀ i ∈
{1, · · · , B},

P (wt ∈ Sϵ
W(ci, hi)) ≥ pw(ϵ) > 0.

Assumption 4 is a relaxation of Assumption 3 in two
perspectives:

• While Assumption 3 requires a non-vanishing density in
the neighborhood of every boundary point, Assumption
4 only requires it on a subset of boundary points.

• The ϵ-ball considered in Assumption 3 is usually a
subset of the ϵ-slice considered in Assumption 4 for
the same ϵ (see Figure 1 as an example). Therefore,
pw(ϵ) ≥ qw(ϵ) in most cases.

To provide more intuitions for Assumption 4, we discuss the
three examples in Section II below.

Example 4 (Weighted ℓ∞ ball). We consider wt uniformly
sampled from the ℓ∞ ball in Example 1. With C including
a non-extreme point on each facet of W, and H including
each facet’s unit normal vector, the corresponding pw(ϵ) is
O(ϵ), which is greater than qw(ϵ) in Example 1.

Example 5 (Weighted ℓ1 ball). We consider wt uniformly
sampled from the ℓ1 ball in Example 2. With C including a
non-extreme point on each facet of W, and H including each
facet’s unit normal vector, the corresponding pw(ϵ) is O(ϵ),
which is greater than qw(ϵ) in Example 2.

5Though we consider a finite number of boundary points in Assumption
4, the following Theorem 2 remains true when C is infinite. Meanwhile,
Theorem 1 may serve as a special case of when C is infinite.



Example 6 (ℓ2 ball). We consider wt uniformly sampled
from the ℓ2 ball in Example 3. H and C can be arbitrarily
chosen given that

⋂
C,H H(c, h) is compact, the correspond-

ing pw(ϵ) is O
(
ϵ

n+1
2

)
, which is of the same order as qw(ϵ)

in Example 3.

B. Convergence Rate Analysis under Assumption 4

From now on, we will assume that Assumptions 1, 2, and
4 hold. We provide a new version of the estimation error
bound in Theorem 2 based on our relaxed Assumption 4.

Theorem 2. With Assumptions 1, 2, 4, ∀T > m > 0, δ > 0:

P (diam(ΘT ) > δ) ≤ T

m
Õ(n5/2

z )anz
2 exp(−a3m)︸ ︷︷ ︸

Term 1

+

Õ
(
(nxnz)

5/2
)
anxnz
5 [1− pw(

a1δξ

4
)]⌈T/m⌉−1︸ ︷︷ ︸

Term 3

(6)

where a5 = max{1, 4bz
a1ξ

}, and the projection constant ξ =

min||x||2=1 maxh∈H h⊤x.6

Differences between Theorems 1 and 2: Both (5) and
(6) consist of two terms, where Term 1 is the same, but the
second term is different. Term 3 differs from Term 2 in
two aspects: (i) Term 3 depends on pw(·) while Term 2
depends on qw(·), and (ii) there is an additional projection
constant ξ in pw(·) and a5 of Term 3. Notice that both pw
and ξ depend on our choices of C and H, which will be
discussed in more details below.

On the projection constant: ξ depends on our choices of
C and H. By definition, we have ξ := min

||x||2=1
max
h∈H

h⊤x. It

can be shown that 0 < ξ ≤ 1 (See Appendix B). Notice that,
by adding more boundary points to C and more directions to
H, we can increase ξ. As an extreme case, if we choose all
the points on the boundary and choose all the unit vectors
as H, then ξ = 1. However, if we choose too many points in
C, it might also decrease pw(·) since it is the uniform lower
bound for all points in C. Therefore, there is a tradeoff on
the choices of C and H.

On the choices of C and H: There is a trade-off on
choosing C and H to minimize the upper bound in (6).
On the one hand, as discussed earlier, since (6) decreases
with ξ, it is tempting to add more boundary points to C to
increase ξ to reduce the upper bound in (6). On the other
hand, notice that (6) decreases with pw(·), but having more
points in C might decrease the boundary-visiting probability
density pw(·), which induces a larger upper bound (6). As
an example, consider Example 1, if we add a SHS at a
degenerate point that is not parallel to any facets of the
weighted ℓ∞ ball, pw(ϵ) will decrease to ϵnx . Therefore,
the best estimation error bound induced by Theorem 2 is by
optimizing over the choices of C and H.

Though it is complicated to optimize the choices of C and
H in general, it is worth emphasizing that these choices only

6In the case where |H| = +∞, the projection constant is similarly
defined by ξ = min||x||2=1 suph∈H h⊤x.

affect our theoretical bounds and do not affect the empirical
performance of SME.

Besides, for some special cases, we have some intuitions
on optimizing C and H. For example, for any polytopic W,
we choose an arbitrary non-extreme point as c for every facet
of W, then the unit normal vector h at c is unique, and
pw(ϵ) = O(ϵ) is the largest possible value.

Convergence rates: Similar to Corollary 1, we discuss
the explicit convergence rates of SME induced by Theorem
2 in the following.

Corollary 2. If pw(ϵ) = O(ϵp) for p > 0, given m ≥ O(nz+
log T − log ϵ), with probability at least 1− 2ϵ, one has

diam(ΘT ) ≤ Õ

(
1

ξ

(nxnz

T

) 1
p

)
Convergence rates for Examples 4-6: For Examples 4

and 5, we know that pw(ϵ) = O(ϵ) holds for both scenarios.
By Corollary 2, we have the convergence rates of both the
ℓ1 and the ℓ∞ ball supports are Õ

(
nxnz

ξT

)
. Specially, for

the ℓ∞-ball support, the corresponding ξ is 1√
nx

, which is
consistent with the result in [2]. As for Example 6, we have
pw(ϵ) = O

(
ϵ

n+1
2

)
. Hence, for the ℓ2 ball support, we have

a convergence rate of Õ
((

nxnz

T

) 2
n+1

)
. The corresponding ξ

is 1.
Though only uniform distribution is considered in the

above two examples, some other noise types also satisfy
the O(ϵ) boundary assumption (e.g. truncated Gaussian). By
Corollary 2, the convergence rates of both the ℓ∞-ball and
the ℓ1-ball are of Õ

(
nxnz

ξT

)
. In fact, a uniform / truncated

Gaussian noise supported on a polytope always results in
a Õ

(
nxnz

ξT

)
convergence rate (simply consider C to be the

set of any non-extreme point on every facet of W). Proofs
of Corollary 2 and all the examples can be found in the
Appendix (See Appendices C,D,E,F.).

Remark 1. We first introduce Assumption 3 then Assumption
4 because i) we demonstrate the benefits of Assumption 4
by comparison with the classical one, ii) Assumption 3 and
Theorem 1 are simpler, e.g. not involving SHS or ξ.

V. PROOF OF THEOREM 2

This section presents a proof of Theorem 2. As mentioned
earlier, Theorem 1 can be regarded as a special case of
Theorem 2 if we allow H to contain infinitely many distinct
unit normal vectors. A rigorous proof of Theorem 1 is
available in Appendix A. We only focus on the proof of
Theorem 2 here in 4 major steps:
(1) We divide the event {diam(ΘT ) > δ} by PE and non-

PE (see (7)). The probability of non-PE is bounded in
[2], so we focus on the event with PE (Lemma 2).

(2) In Section V-B, we divide {diam(ΘT ) > δ} with PE
(denoted as E1∩E2) into sub-events {E1,i}vγi=1 based on
a finite discretization of SF (Claim 1).

(3) In Section V-C, we further discretize each sub-event
E1,i by time segmentation (see Claim 2), which can



be further bounded using Bayes’ Rule by utilizing a
stopping time Li,k defined in (9) (see Claim 3).

(4) Combining the three steps above completes the proof.

A. Step 1: Partitioning Based on the Persistent Excitation
For t ≥ 0, one has xt+1 − θ̂zt = wt − (θ̂ − θ∗)zt.

Define the estimation error by γ := θ̂ − θ∗. Define the
error set by ΓT := {γ : ∀ 0 ≤ t ≤ T − 1, wt − γzt ∈ W}.
Notice that ΓT is attained by translating ΘT by −θ∗. Hence,
diam(ΓT ) = diam(ΘT ). In the rest of this proof, we will
focus on diam(ΓT ). Next, we define two events as follows:

Definition 4. Define the event that an large error exists by

E1 :=

{
∃ γ ∈ ΓT s.t. ||γ||F ≥ δ

2

}
For the sake of convenience in the subsequent analysis, let
a1 = σzpz

4 . Define the event of persistence excitation by

E2 :=

{
1

m

m∑
s=1

zkm+sz
⊤
km+s ⪰ a21Inz , ∀ 0 ≤ k ≤

⌈
T

m

⌉
−1

}
We first prove {diam(ΓT ) > δ} ⊆ E1 by contrapositive.

Suppose ¬E1 holds, i.e. ∀γ ∈ ΓT , ||γ||F < δ
2 . Then

∀ γ1, γ2 ∈ ΓT , we have ||γ1 − γ2||F ≤ ||γ1||F + ||γ2||F <
δ. Taking supremum over γ1γ2, we have diam(ΓT ) =
supγ1,γ2∈ΓT

||γ1 − γ2||F ≤ δ. Therefore, ¬E1 implies
¬{diam(ΓT ) > δ}. By contrapositive, we have {diam(ΓT ) >
δ} ⊆ E1, which implies the following.

P (diam(ΓT ) > δ) ≤ P (E1) = P
(
(E1 ∩ E2) ∪ (E1 ∩ E∁

2 )
)

≤ P (E1 ∩ E2) + P
(
E∁
2

)
. (7)

The bound on P
(
E∁
2

)
follows directly from [2] as below.

Lemma 1 (Lemma 1 in [2]). Given Assumptions 1, 2, then
P
(
E∁
2

)
≤ Term 1 in (6).

Thus, only the following lemma remains to be shown.

Lemma 2. Given Assumptions 1, 2, and 4, then
P (E1 ∩ E2) ≤ Term 3 in (6).

The next three subsections are dedicated to the proof of
Lemma 2.

B. Step 2: Discretization on Space
We take advantage of a theorem from [52] on covering a

ball with smaller balls, which is stated as follows.

Theorem 3 (Ball-covering Theorem in [52]). Consider cov-
ering BF ⊆ Rnx×nz with small balls with radius ϵγ >
0. Denote vγ the minimal number of ϵγ-balls needed for
the covering net M such that ∀ b ∈ BF ,∃ bi ∈ M with
||b−bi||F ≤ 2ϵγ . Then vγ≤Õ

(
(nxnz)

5
2

)(
1
ϵγ

)nxnz

if ϵγ ≤ 1.

Denoting ϵγ = 1
a5

= min{1, σzpzξ
16bz

}, we can find an ϵγ-
net denoted M := {γi}

vγ
i=1 where ∀γ̄ ∈ SF , ∃γi ∈ M such

that ||γi − γ̄||F ≤ 2ϵγ . We also have:

vγ ≤ Õ
((

nxnz)
5/2
))

anxnz
5 (8)

We define a stopping time

Li,k := min {m+ 1,min {l ≥ 1 : ||γizkm+l||2 ≥ a1}} (9)

Define two adapted processes {hi,t}t≥0,{ci,t}t≥0 where

hi,t := argmax
h∈H

h⊤(γizt),

and ci,t ∈ C is defined to be the boundary point correspond-
ing to hi,t. Then we make the following Claim.

Claim 1. ∀ i ∈ {1, · · · , vγ}, define

E1,i :=
{
∃ γ ∈ ΓT such that ∀ k ∈

{
0, · · · ,

⌈
T

m

⌉
− 1

}
,

h⊤
i,km+Li,k

(γzkm+Li,k
) ≥ a1δξ

4

}
Then E1 ∩ E2 ⊆

⋃vγ
i=1 (E1,i ∩ E2), and

P(E1 ∩ E2) ≤ Õ
(
(nxnz)

5/2
)
anxnz
5 max

i∈{1,··· ,vγ}
P(E1,i ∩ E2).

Proof of Claim 1. By E1, ∃ γ ∈ ΓT with ||γ||F ≥ δ
2 , define

the direction vector by

γ̄ :=
γ

||γ||F
(10)

Notice that ∀ γ̄ ∈ SF , ∃ γi ∈ M such that ||γ̄ − γi||F ≤
2
a5

. By E2, for any k ∈
{
0, 1, · · · ,

⌈
T
m

⌉
− 1
}

, we have
1
m

∑m
s=1 ||γizkm+s||22 ≥ a21. By the Pigeonhole Principle,

∀k ∈
{
0, · · · ,

⌈
T
m

⌉
− 1
}

, ∃L = L(k, i) ∈ {1, · · · ,m}
such that ||γizkm+l||2 ≥ a1. Hence, ∀ i, k, we have Li,k =
minL(k, i) ≤ m. Thus, we also have ||γizkm+Li,k

||2 ≥ a1.
It follows that

h⊤
i,km+Li,k

(γ̄zkm+Li,k
)

=h⊤
i,km+Li,k

{
[γi − (γi − γ̄)] zkm+Li,k

}
=h⊤

i,km+Li,k
(γizkm+Li,k

)− h⊤
i,km+Li,k

[
(γi − γ̄)zkm+Li,k

]
≥ξa1 − ||γi − γ̄||2 ·||zkm+Li,k

||2 ≥ ξa1−
2bz
a5

≥ a1ξ

2
(11)

By (10) and (11), ∃ i ∈ {1, · · · , vγ} such that

∀ 0 ≤ k ≤
⌈
T

m

⌉
, h⊤

i,km+Li,k
(γzkm+Li,k

) ≥ a1δξ

4
(12)

Consequently, when E1 holds, there exists i ∈ {1, · · · , vγ}
that E1,i holds. It follows that E1 ∩ E2 ⊆

⋃vγ
i=1 (E1,i ∩ E2).

Consequently, by the sub-additive property of the probability
measure, we have P (E1 ∩ E2) ≤

∑vγ
i=1 P (E1,i ∩ E2) .

With Claim 1 proven, we have discretized the event E1 ∩
E2 into sub-events relevant to points on the net M, which
leads to a finitely additive upper bound for the probability
of E1 ∩ E2. We will then focus on bounding the probability
of the sub-events from above in the next. Namely, we want
to further refine E1,i ∩ E2 by time segementation.



C. Step 3: Partition on Time

Now we need to further cover the events {E1,i∩E2}
vγ
i=1 to

deduce a more explicit bound. Recall Definition 3, we have

W ⊆
B⋂
i=1

H(ci, hi). (13)

We want to take advantage of Assumption 4 at each stopping
time Li,k for each k ∈

{
0, 1, · · · ,

⌈
T
m

⌉
− 1
}

. The following
claim discretizes the event E1,i∩E2 for any i ∈ {1, · · · , vγ}.

Claim 2. ∀ 1 ≤ i ≤ vγ , 0 ≤ k
⌈
T
m

⌉
− 1, denote Gi,k :=

Ai,k ∩ E2, where

Ai,k :=

{
h⊤
i,km+Li,k

(
wkm+Li,k

−ci,km+Li,k

)
≥ a1δξ

4

}
.

then E1,i ∩ E2 ⊆
⌈ T

m⌉−1⋂
k=0

Gi,k.

Proof of Claim 2. Recall that by (13) and (4),

∀ t ≥ 0, wt − γzt = xt+1 − θ̂zt ∈ W ⊆
B⋂
i=1

H(ci, hi)

Therefore, ∀ t ≥ 0, ∀hj ∈ H, one has h⊤
j wt ≥ h⊤

j cj . For
t = km+ Li,k, hj = hi,km+Li,k

, by E1,i, we have, ∀ k:

h⊤
i,km+Li,k

(wkm+Li,k
−γzkm+Li,k

) ≥ h⊤
i,km+Li,k

ci,km+Li,k

Therefore, when E1,i holds, we have h⊤
i,km+Li,k

(wkm+Li,k
−

ci,km+Li,k
) ≥ h⊤

i,km+Li,k
(γzkm+Li,k

) ≥ a1δξ
4 by (12),

which is
⋂⌈ T

m⌉−1

k=1 Ai,k.

In the next, we present an upper bound for the relaxed
events by the following claim.

Claim 3. For any i ∈ {1, · · · , vγ}:

P

⌈ T
m⌉−1⋂
k=0

Gi,k

 ≤
(
1− pw

(
a1δξ

4

))⌈ T
m⌉−1

(14)

Proof sketch of Claim 3. Due to page limitation, we present
a proof sketch here and defer the complete proof to Appendix
G. First, by Bayes’ Rule, ∀ 1 ≤ i ≤ vγ ,

P

⌈ T
m⌉−1⋂
k=0

Gi,k

 = P (Gi,0)

⌈ T
m⌉−1∏
k=1

P

(
Gi,k

∣∣∣∣∣
k−1⋂
ℓ=0

Gi,ℓ

)
.

(15)
Then we bound every term7 P

(
Gi,k

∣∣∣⋂k−1
j=0 Gi,j

)
from

above by 1−pw

(
a1δξ
4

)
, which finishes the proof. To obtain

this, we utilize the stopping time Li,k defined in (9). By
Bayes’ Rule and the Law of Total Probability, we can show:

P

Gi,k

∣∣∣∣∣∣
k−1⋂
j=0

Gi,j

 ≤
m∑
l=1

P
Ai,k

∣∣∣∣∣∣Li,k = l,

k−1⋂
j=0

Gi,j


7P (Gi,0) can be bounded similarly.

× P

Li,k= l

∣∣∣∣∣∣
k−1⋂
j=0

Gi,j

 (16)

By further utilizing the Bayes’ Rule and the Law of Total
Probability, it can be shown that

P

Ai,k

∣∣∣∣∣∣Li,k = l,

k−1⋂
j=0

Gi,j

 ≤ 1− pw

(
a1δξ

4

)
(17)

Claim 3 can be proven by combing (15), (16), and (17).

D. Step 4: Conclusion & Assembly

By Claim 1 and Claim 2, we conclude that

E1 ∩ E2 ⊆
vγ⋃
i=1

(E1,i ∩ E2) ⊆
vγ⋃
i=1

⌈ T
m⌉−1⋂
k=0

Gi,k


Combining (8) and (14), we prove Lemma 2. Ultimately,
Theorem 2 is deduced from combining it with Lemma 1.

VI. NUMERICAL EXPERIMENTS

This section provides numerical examples to test our
theoretical bounds and compare SME with LSE’s confidence
bounds (Theorem 1 [7]) in simulations. We consider a
randomly generated example and a linearized Boeing 747
model based on [53].

Experiment settings for LSE: We consider 95% confi-
dence bounds, and use the trace of covariance as a lower
bound for the variance proxy L of wt as shown in [54]. We
use λ = 10−3 as the Ridge regularization parameter.

On the projection constant ξ. Figure 2 considers a
randomly generated parameter matrix θ∗ ∈ R2×4, and the
noise wt uniformly distributed on B2. We consider the SMEs
trained using different outer approximations of B2. Namely,
we consider replacing W in (4)

with a regular quadrilateral (4 constraints, yellow curve),
a regular octagon (8 constraints, blue curve), and a regular
hexadecagon (16 constraints, green curve) circumscribing
B2. In this way, they have same pw(·) but different ξ so we
can visualize the impact of ξ on convergence performance. It
can be shown that 0 < ξ4 < ξ8 < ξ16 < 1, where ξi denotes
the ξ for SME with i-constrained W.

By Theorem 2 and Corollary 2, the estimation error of
SME decreases with ξ. Notice that this is consistent with
Figure 2: SME with higher ξ (using W with more constraints
to circumscribe B2) provides a smaller diam(ΘT ). In the
extreme case when W = B2, we have ξ = 1 to be the
largest, which is consistent with Figure 2 showing that SME
with W = B2 provides the smallest uncertainty sets.

On pw(·). Figure 3 considers a linearized version of Boe-
ing 747 flight control model [53]. We consider wt following
truncated Gaussian distributions on ℓ1 balls with the same
covariance but different radii wmax = 1, 2, 3. We consider
that SME knows the exact support of the distributions as W.
In this case, different W has same ξ but different pw(c)̇. The
larger wmax is, the smaller pw(·) is.



Fig. 2: This plot compares LSE’s 95% confidence (red) with
SME with different W that enjoys same pw(·) but different
ξ, i.e. ξ4 < ξ8 < ξ16 < 1. W for 4/8/16 constraints
respectively correspond to the tightest quadrilateral, octagon,
and hexadecagon outer-approximations of B2 and the pink
curve shows SME using exactly W = B2.

Fig. 3: Comparison of SME and LSE’s confidence bounds
for truncated Gaussian on ℓ1 balls with wmax = 1, 2, 3.

By Theorem 2 and Corollary 2, the estimation error of
SME decreases with pw(·). Notice that this is consistent with
Figure 2 because SME with higher wmax provides larger
diam(ΘT ) due to smaller pw(·). LSE’s confidence bounds
follow the same trend because increasing wmax causes larger
variances of wt and thus larger estimation errors in [7].

Discussions on distributions and ℓ2 balls. Figure 4 also
uses the Boeing 747 example. Figure 4’s (a) and (b) compare
SME and LSE with wt following truncated Gaussian and
Uniform distributions. The trends are similar, which is not
surprising because these two distributions enjoy the same
order of convergence rate according to Corollary 2.

Besides, in Figure 4(a), we compare the differences be-
tween ℓ1 and ℓ2 balls. The ℓ2 ball case indeed has a smaller
gap between LSE and SME, demonstrating a slightly worse
performance, but the performance is still quite similar to
the ℓ1 case. This is quite interesting because our theoretical
analysis provides a much worse bound for ℓ2 case. Therefore,
we shows that even though our theoretical bounds success-
fully predicts the effects of pw and ξ and explains the good
performance of SME on polytopes, our convergence rates for
ℓ2 can still be improved, which is left as our future work.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

This paper provides non-asymptotic analysis for set mem-
bership estimation for an unknown linear control system

(a) Uniform distribution. (b) Truncated Gaussian.

Fig. 4: This plot compares truncated Gaussian and uniform
distributions on ℓ1 and ℓ2 balls. The plots are based on 5
runs and the shades represent three standard deviations.

with i.i.d. disturbances bounded by general convex sets. We
study both the classical assumption in [1] and propose a new
relaxed assumption for better bounds.Future directions in-
clude: 1) improving the bound for ℓ2 balls; 2) non-asymptotic
analysis of SME with non-stochastic disturbances; 3) propos-
ing and analyzing more computationally efficient SMEs; 4)
learning tight bounds W and its performance bounds; 5)
fundamental limits; 6) regrets of robust adaptive controllers
using SME, 7) analyzing SME under imperfect state obser-
vations, nonlinear systems, etc.
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APPENDIX

List of Contents

This appendix provides proofs in the following order.

• In Appendix A, we provide a proof of Theorem 1.
• In Appendix B, we prove the strict positivity of ξ

as mentioned in the paragraph ”on the projection
constant” after Theorem 2.

• In Appendix C, we prove Corollaries 1 and 2.



• In Appendices D, E, and F, we respectively establish
the asymptotic properties of pw(·) and qw(·) under
ℓ∞/ℓ1/ℓ2-bounded noise support settings.

• In Appendix G, we complete the proof of Claim 3.

A. Proof of Theorem 1

We present a proof of Theorem 1. Similar to the proof of
Theorem 2, the reasoning can be divided into 4 major steps:

(1) We firstly bound the event {diam(ΘT ) > δ} (the “large
diameter event”) by partitioning it into 2 circumstances:
either with or without the persistent excitation (PE)
condition. Since the bound for the probability of the
absence of the PE condition is identical to its well-
elaborated counterpart in [2], it suffices to focus on the
scenario where PE is present.

(2) By discretizing the unit sphere SF1 (0) in the nx × nz-
dimensional space equipped with the Frobenius norm,
we cover the “large diameter event” by the union of a
sequence of events where each of them is related to the
realization of a point, at a stopping time during each
PE window, in the underlined discretization. The sub-
additive property of the probability measure allows us
to bound the “large diameter event” but the sum of these
discrete events’ probabilities.

(3) For each of the points in the discretization, and each
window of persistent excitation, we establish a prob-
abilistic relation between the noise realization and a
certain boundary point of W, at the corresponding
stopping time. Using trivial Bayesian tricks, we can
bound each term of the summation in Step (2) from
above by a product of conditioning probabilities.

(4) Combining all the 3 Steps above, we can finally assem-
ble the upper bound in Theorem 1.

We propose the detailed proof for each of the 4 steps in the
following 4 subsections.

1) Partitioning Based on the Persistent Excitation: Recall
that in Section V-A, it is defined that

E1 :=

{
∃ γ ∈ ΓT s.t. ||γ||F ≥ δ

2

}
E2 :=

{
1

m

m∑
s=1

zkm+sz
⊤
km+s ⪰ a21Inz

, ∀ 0 ≤ k ≤
⌈
T

m

⌉
−1

}

Also, we have

P (diam(ΘT ) > δ) ≤ P (E1 ∩ E2) + P
(
E∁
2

)
Theorem 1 can then be shown by combing Lemma 1 and
Lemma 3. That is, we will concentrate on finding the bound
for P (E1 ∩ E2). That is, it remains to be shown that

Lemma 3. If Assumptions 1, 2, and 3 hold, then

P (E1 ∩ E2) ≤ Term 2 in (5)

We will prove Lemma 3 in the next three subsections.

2) Discretization on The Space: Despite the partition
above, it remains difficult to bound the “∃” statement in the
event E1 ∩ E2 due to the continuity of the space Rnx×nz .
Hence, we want to further refine the event by covering
it with a collection of smaller events corresponding to a
discrete net on the space. For the nx × nz-dimensional unit
Frobenius-norm sphere SF1 (0) := {γ̄ ∈ Rnx×nz : ||γ̄||F =
1}, we consider covering it with smaller balls with radius
ϵ̃γ = 1

a5
= min

{
1, σzpz

16bz

}
where σz, pz, bz are defined in

Assumption 2, and denote the corresponding ϵ̃γ-net to be
M̃ := {γ̃i}

ṽγ
i=1. Here, ṽγ is the number of small ϵ̃γ-balls

required to cover the sphere (i.e. ∀ γ̄ ∈ SF1 (0), ∃γ̃i ∈ M̃
such that ||γ̃i − γ̄||F ≤ 2ϵ̃γ). For the theory of covering
number, we refer the readers to [55], [56] and Appendix D.1
in [2]. Here we have:

ṽγ ≤ Õ
(
(nxnz)

5/2
)
anxnz
5

We define a stopping time

L̃i,k := min {m+ 1,min {l ≥ 1 : ||γ̃izkm+l||2 ≥ a1}}

∀ t ≥ 0, define the adapted process {ṽi,t}t≥0

ṽi,t := arg max
v∈S21(0)

v⊤(γ̃izt)

where S21(0) := {w ∈ Rnx : ||w||2 = 1}. Since zt is
Ft-measurable and {L̃i,k = ℓ} ∈ Fkm+ℓ, then ṽi,t is Ft-
measurable, and L̃i,k a stopping time with respect to the
original filtration. Notice that since S21(0) is compact, the
maximizer is well-defined. However, it may not be unique.
We can take arbitrary one of such qualified v.

In the next, we want to discretize the event E1 ∩ E2 by
splitting it into sub-events regarding the 1

a5
-net of SF1 (0),

using the sub-additivity property of the probability measure.
We have the following claim.

Claim 4. ∀ i ∈ {1, · · · , ṽγ}, define

Ẽ1,i :={∃ γ ∈ ΓT such that ∀ k ∈ {0, · · · , T/m− 1},

ṽ⊤
i,km+L̃i,k

(γzkm+L̃i,k
) ≥ a1δ

4
}

Then

E1 ∩ E2 ⊆
ṽγ⋃
i=1

(
Ẽ1,i ∩ E2

)
Thus,

P(E1 ∩ E2) ≤ Õ
(
(nxnz)

5/2
)
anxnz
5 max

1≤i≤ṽγ
P(Ẽ1,i ∩ E2)

(18)

Proof of Claim 4. To discretize, ∀ γ ∈ Rnx×nz \{0}, denote

γ̄ :=
γ

||γ||F
Notice that ∀ γ̄ ∈ SF1 (0), ∃ γ̃i ∈ M̃ such that ||γ̄ − γ̃i||F ≤
2
a5

. By E2, for any k ∈ {0, 1, · · · , T/m− 1}

1

m

m∑
s=1

||γ̃izkm+s||22 ≥ a21



By the Pigeonhole Principle, ∀k ∈ {0, · · · , T/m− 1}, ∃ l =
l(k, i) ∈ {1, · · · ,m} such that ||γ̃izkm+l||2 ≥ a1. Hence,
we have

∀ i, k, L̃i,k = min l(k, i) ≤ m

Moreover, since L̃i,k is the minimum of all l(k, i), it also
satisfies the following inequality.

||γ̃izkm+L̃i,k
||2 ≥ a1

It follows that

ṽ⊤
i,km+L̃i,k

(γ̄zkm+L̃i,k
)

=ṽ⊤
i,km+L̃i,k

{
[γ̃i − (γ̃i − γ̄)] zkm+L̃i,k

}
=ṽ⊤

i,km+L̃i,k
(γ̃izkm+L̃i,k

)− ṽ⊤
i,km+L̃i,k

[
(γ̃i − γ̄)zkm+L̃i,k

]
≥a1 − ||γ̃i − γ̄||2 · ||zkm+L̃i,k

||2

≥a1 −
2bz
a5

≥a1
2

(19)

Likewise, if ∃γ ∈ ΓT such that ||γ||F ≥ δ
2 , then it can be

written as ||γ||F γ̄ for some γ̄ ∈ SF1 (0). The above reasoning
leads to that such a γ also satisfies the following: by (19),
there exists i ∈ {1, · · · , ṽγ} such that ∀k ∈ {0, · · · , T/m−
1}

ṽ⊤
i,km+L̃i,k

(γzkm+L̃i,k
) ≥ a1δ

4
(20)

Therefore, by the sub-additive property of the probability
measure,

P (E1 ∩ E2) ≤
ṽγ∑
i=1

P
(
Ẽ1,i ∩ E2

)
It follows that ∀ i ∈ {1, · · · , ṽγ},

P(E1 ∩ E2) ≤ Õ
(
(nxnz)

5/2
)
anxnz
5 max

1≤i≤ṽγ
P(Ẽ1,i ∩ E2)

3) Covering by Discretization on The Time:

Claim 5. ∀ i ∈ {1, · · · , ṽγ}, k ∈ {0, · · · ,
⌈
T
m

⌉
− 1}, we

denote
w0

i,km+L̃i,k
:= arg min

w∈W
ṽ⊤
i,km+L̃i,k

w

and

G̃i,k :=

{
||wkm+L̃i,k

− w0
i,km+L̃i,k

||2 ≥ a1δ

4

}
∩ E2

then

Ẽ1,i ∩ E2 ⊆
⌈ T

m⌉−1⋂
k=0

G̃i,k

Proof of Claim 5. Recall that by the algorithm 4, ∀ t ≥ 0,

wt − γzt = xt+1 − θ̂zt ∈ W

Since W is convex, compact, and has a non-empty interior,
by the Supporting Hyperplane Theorem, W can be repre-
sented with all its supporting hyperplanes. If we denote

h(v) := min
w∈W

v⊤w

then we can represent W in the following manner.

W = {w ∈ Rnx : ∀v ∈ S21(0), v⊤w ≥ h(v)}

Therefore, ∀v ∈ S21(0), v⊤(wt − γzt) ≥ h(v). Looking at
when t = km+ L̃i,k, v = ṽi,km+L̃i,k

, we have

ṽ⊤
i,km+L̃i,k

(wkm+L̃i,k
− γzkm+L̃i,k

) ≥ h(ṽi,km+L̃i,k
)

It follows that, when Ẽ1,i holds, by (20), we have

ṽ⊤
i,km+L̃i,k

wkm+L̃i,k
− h(ṽi,km+L̃i,k

)

≥ṽ⊤
i,km+L̃i,k

(γzkm+L̃i,k
)

≥a1δ

4
(21)

Since W is compact and v⊤w is a linear functional of w
with any fixed v, then some of its minimizers for h(v) must
be boundary points of W. For all i ∈ {1, · · · , ṽγ}, k ∈
{0, · · · ,

⌈
T
m

⌉
− 1}, consider

{w0
i,km+L̃i,k

} ∈ arg min
w∈W

ṽ⊤
i,km+L̃i,k

w ∩ ∂W (22)

Though the minimizer may not be unique, yet we can take
any one of them. It follows that

h(ṽi,km+L̃i,k
) = ṽ⊤

i,km+L̃i,k
w0

i,km+L̃i,k

By the Cauchy-Schwartz Inequality, we have

a1δ

4

(a)

≤ |ṽ⊤
i,km+L̃i,k

(wkm+L̃i,k
− w0

i,km+L̃i,k
)|

(b)

≤ ||ṽi,km+L̃i,k
||2 · ||wkm+L̃i,k

− w0
i,km+L̃i,k

||2
(c)

≤ ||wkm+L̃i,k
− w0

i,km+L̃i,k
||2

Here, (a) is deduced by (21) and (22); (b) is from the
Cauchy-Schwartz Inequality; (c) is implied by the fact that
||ṽi,km+L̃i,k

||2 = 1. Thus, if we define events {G̃i,k}T/m−1
k=0

in the following manner

G̃i,k :=

{
||wkm+L̃i,k

− w0
i,km+L̃i,k

||2 ≥ a1δ

4

}
∩ E2

Then we can deduce that ∀ i ∈ {1, · · · , ṽγ}

Ẽ1,i ∩ E2 ⊆
⌈ T

m⌉−1⋂
k=0

G̃i,k

Claim 6. For any i ∈ {1, · · · , ṽγ}:

P

⌈ T
m⌉−1⋂
k=0

G̃i,k

 ≤
(
1− qw

(
a1δ

4

))⌈ T
m⌉−1



Proof of Claim 6. To find an upper bound for the probability

of
⌈ T

m⌉−1⋂
k=0

G̃i,k, notice that by the Bayes’ Theorem, ∀ i:

P

⌈ T
m⌉−1⋂
k=0

G̃i,k

 = P
(
G̃i,0

) ⌈ T
m⌉−1∏
k=1

P

(
G̃i,k

∣∣∣∣∣
k−1⋂
ℓ=0

G̃i,ℓ

)

We look into an arbitrary factor

(
i.e. P

(
G̃i,k

∣∣∣∣∣
k−1⋂
ℓ=0

G̃i,ℓ

))
of the product on the right hand side. Recall that when
the system is persistently excited (i.e. when E2 holds),
we have: 1 ≤ L̃i,k ≤ m for all i, k. Hence, G̃i,k =⇒{
||wkm+L̃i,k

− w0
i,km+L̃i,k

||2 ≥ a1δ
4 ; 1 ≤ L̃i,k ≤ m

}
.

Thus, for each of these factors:

P

G̃i,k

∣∣∣∣∣∣
k−1⋂
j=0

G̃i,j


≤P
(
||wkm+L̃i,k

− w0
i,km+L̃i,k

||2 ≥ a1δ

4
;

1 ≤ L̃i,k ≤ m

∣∣∣∣∣∣
k−1⋂
j=0

G̃i,j


=

m∑
l=1

P

||wkm+l − w0
i,km+l||2 ≥ a1δ

4
; L̃i,k = l

∣∣∣∣∣∣
k−1⋂
j=0

G̃i,j


≤

m∑
l=1

P
||wkm+l − w0

i,km+l||2 ≥ a1δ

4

∣∣∣∣∣∣L̃i,k = l,

k−1⋂
j=0

G̃i,j


×P

L̃i,k = l

∣∣∣∣∣∣
k−1⋂
j=0

G̃i,j


Meanwhile, notice that

P

||wkm+l − w0
i,km+l||2 ≥ a1δ

4

∣∣∣∣∣∣L̃i,k = l,
k−1⋂
j=0

G̃i,j


(d)
=

∫
v0:km+l

P
(
||wkm+l − w0

i,km+l||2 ≥ a1δ

4
,

w0:km+l = v0:km+l

∣∣∣∣∣∣L̃i,k = l,

k−1⋂
j=0

G̃i,j

 dv0:km+l

(e)
=

∫
Q̃k,l

[
P
(
||wkm+l − w0

i,km+l||2≥
a1δ

4

∣∣∣∣w0:km+l = v0:km+l

)

×P

w0:km+l = v0:km+l

∣∣∣∣∣∣L̃i,k = l,

k−1⋂
j=0

G̃i,j

 dv0:km+l

≤
(
1− qw

(
a1δ

4

))
×

∫
Q̃k,l

P

w0:km+l = v0:km+l

∣∣∣∣∣∣L̃i,k = l,

k−1⋂
j=0

G̃i,j

 dv0:km+l

=1− qw

(
a1δ

4

)
Here, (d) is deduced by the Law of Total Probability, and (e)
comes from the Bayes’ Rule. Specially, we denote a sequence
of noise (or its realization) by

w0:km+l := {w0, w1, · · · , wkm+l−1}

and the domain of integration by

Q̃k,l :={v0:km+l such that w0:km+l = v0:km+l satisfies

L̃i,k = l and
k−1⋂
j=1

G̃i,j}

The above implications induce the following result:

P
(
G̃i,k

∣∣∣∩k−1
j=0 G̃i,j

)
≤
(
1− qw

(
a1δ

4

)) m∑
l=1

P
(
L̃i,k = l

∣∣∣∩k−1
j=0 G̃i,j

)
=1− qw

(
a1δ

4

)
By a similar procedure, we can also deduce that

P
(
G̃i,0

)
≤ 1− qw

(
a1δ

4

)
It follows that

P

⌈ T
m⌉−1⋂
k=0

G̃i,k

 ≤
(
1− qw

(
a1δ

4

))⌈ T
m⌉−1

(23)

4) The Final Assembly: By combining (18) and (23), we
proved Lemma 3 which bounds the term P (E1 ∩ E2) from
above, and in Lemma 1 we found an upper bound for the
term P

(
E∁
2

)
. By combining Lemmas 1 and 3, we finish the

proof of Theorem 1.

B. Proof of the strict positivity of ξ

1) H is finite: Recall that ξ = min||x||2=1 maxh∈H h⊤x.
We show ∀x ∈ S2, maxh∈H h⊤x > 0 by contradiction.
Suppose ∃x ∈ S2 such that ∀h ∈ H, h⊤x ≤ 0. It follows
that ∀w ∈ W, n > 0, w − nx ∈ W. This cannot hold since
W is compact.

2) H is infinite: In this case, recall that ξ =
min||x||2=1 suph∈H h⊤x. We prove by contradiction. ∀ϵ > 0,
suppose that ∃{xn}∞n=1 such that ||x||2 = 1 and ∀h ∈
H, n ≥ 1, h⊤xn ≤ ϵ

n . Let w be an interior point of W.
Then ∀n ≥ 1, w + nxn ∈ W. This cannot hold since W is
assumed to be compact.



C. Proof of Corollary 1 and Corollary 2

In this case we have Ṽ = S1(0), and it follows
that ξ = 1. We first claim that Term 1 ≤ ϵ. To
show this, notice that m ≥ O(nz + log T − log ϵ) =
1
a3

[
O((log a2)nz +

5
2 log nz +O(log T )−O(log ϵ)

]
. It fol-

lows that exp(−a3m) ≤ a−nz
2 n−5/2

z ϵ
T . Therefore, Term 1 ≤

ϵ/m ≤ ϵ. Next we let Term 2 = ϵ. Then ϵ =

Õ
(
(nxnz)

5/2
)
ãnxnz
4

[
1− qw

(
a1δ
4

)]⌈ T
m⌉−1

. Given qw(ϵ) =
O(ϵp), we have:

δp = O

((
4

a1

)p){
1−

[
ϵÕ
(
(nxnz)

5/2
)
anxnz
4

] 1

⌈ T
m⌉−1

}
≤ O

((
4

a1

)p){
1−

[
ϵÕ
(
(nxnz)

5/2
)
anxnz
4

] T
m

}
(b)

≤ O

((
4

a1

)p)
· m
T

· Õ(nxnz) = Õ

((
4

a1

)p

· nxnz

T

)
Inequality (b) is deduced from the fact that ∀x > 0, x−1 ≥
log x. It follows that δ ≤ Õ

((
nxnz

T

) 1
p

)
. Then, Corollary 1

is proven. By replacing a4 with a5, δ with ξδ, and qw(ϵ)
with qw(ϵ) in the above proof, we can show Corollary 2.

D. Proof of Example 1 and Example 4

Recall that the weighted ℓ∞-norm ball is W ={
w ∈ Rnx : max1≤i≤nx

{
|wi|
ai

}
≤ 1
}

, and wt is uniformly
distributed on W. The probability density of wt on W is
fw(x) =

1
2nx

∏nx
i=1 ai

.
1) The ϵ-ball: In this case, we consider any vertex wv

of W, the probability that wt visits Bϵ
2(wv) ∩ W is 1

2nx ·
π
n
2 ϵnx

Γ(n
2 +1)

· 1
2nx

∏nx
i=1 ai

∼ O(ϵnx).

2) The ϵ-slice: At optimality, we can choose one non-
extreme point on each facet of W as c, and the unit
normal vector of this facet at c as h. The ϵ-slice induced
by H(c, h) can be then written as [−a1, a1] × · · · [ai −
ϵ, ai]×[−ai+1, ai+1]×[−anx

, anx
] for some i ∈ {1, · · · , nx}

(or with [−ai,−ai + ϵ]). The probability that wt visits
this ϵ-slice is

ϵ
∏

j ̸=i 2aj

2nx
∏nx

j=1 aj
= ϵ

2ai
∼ O(ϵ). The according

projection constant is ξ = 1
nx

. Therefore, by Corollary 2,

the convergence rate is Õ
(

n3/2
x nz

T

)
.

E. Proof of Example 2 and Example 5

Recall that the weighted ℓ1 ball is W ={
w ∈ Rnx :

∑nx

i=1
|wi|
ai

≤ 1
}

, and wt is uniformly
distributed on W. The probability density of wt on W is
fw(x) =

n!
2n

∏nx
i=1 ai

.
1) The ϵ-ball: In this case, the least intersection of a

boundary ϵ-ball with W is on one of the vertices of W.
Figure 5 demonstrates such an ϵ-ball when nx = 2. Denote
the doubly shaded cone (sector) by Sϵ. Notice that when we
replace ϵ with 2ϵ, the intersection area increases to 2nxSϵ.
It follows that qw(ϵ) = O (ϵnx).

Fig. 5: The greater shaded sector represents the intersection
of the 2ϵ-ball with W, while the smaller doubly shaded sector
represents the intersection of the ϵ-ball with W.

2) The ϵ-slice: This is similar to Example 4. The best
choice of (c, h) is: choose exactly on extreme point of each
facet of W as c, and its according normal vector as h. Any
ϵ-slice can be viewed as the intersection of W and the slab
generated by translating a supporting hyperplane by ϵ. Due to
the symmetric and parallel property of W, every such ϵ-slice
carries a probability measure of O(ϵ).

F. Proof of Example 3 and Example 6

Recall that the ℓ2 ball is W = {w ∈ Rnx : ||w||2 ≤ 1},
and wt is uniformly distributed on W. The probability

density of wt on W is fw(x) =
Γ(nx

2 +1)
π

nx
2

.
1) The ϵ-ball: The volume of the intersection of W and

any ϵ-ball is

Vball(ϵ) =
πnx

Γ
(
nx+1

2

) (∫ T1

0

sinnx θdθ + ϵnx

∫ T2

0

sinnx θdθ

)

where T1 = arccos
(
1− ϵ2

2

)
, T2 = arccos

(
ϵ
2

)
. When ϵ is

small, Vball(ϵ) ∼ O (ϵnx). It follows that qw(ϵ) = O(ϵnx).
2) The ϵ-slice: The volume of the ϵ-slice of W at any

boundary point of W is

Vslice =
πnx

Γ
(
nx+1

2

) ∫ T3

0

sinnx θdθ

where T3 = arccos(1−ϵ). When ϵ is small enough, we have
Vslice(ϵ) ∼ O

(
ϵ

nx+1
2

)
. It follows that pw(ϵ) = O

(
ϵ

nx+1
2

)
.

G. Complete Proof of Claim 3

Notice that by the Bayes’ Theorem, ∀ i:

P

⌈ T
m ⌉−1⋂
k=0

Gi,k

 = P (Gi,0)

⌈ T
m ⌉−1∏
k=1

P

(
Gi,k

∣∣∣∣∣
k−1⋂
ℓ=0

Gi,ℓ

)

We look into an arbitrary term8 P
(
Gi,k

∣∣∣⋂k−1
j=0 Gi,j

)
. Recall

that when the system is persistently excited (i.e. when E2

8By a procedure similar to the following reasoning, we can also deduce
that P (Gi,0) ≤ 1− qw

(
a1δξ
4

)
.



holds), we have: 1 ≤ Li,k ≤ m for all i, k. Hence, Gi,k ⊆
Ai,k ∩ {1 ≤ Li,k ≤ m}. It follows that

P

Gi,k

∣∣∣∣∣∣
k−1⋂
j=0

Gi,j


≤

m∑
l=1

P

Ai,k; Li,k = l

∣∣∣∣∣∣
k−1⋂
j=0

Gi,j


≤

m∑
l=1

P
Ai,k

∣∣∣∣∣∣Li,k = l,

k−1⋂
j=0

Gi,j

P

Li,k= l

∣∣∣∣∣∣
k−1⋂
j=0

Gi,j


(24)

Meanwhile, notice that

P

(
h⊤
i,km+Li,k

(
wkm+Li,k

− ci,km+Li,k

)
≥ a1δξ

4∣∣∣∣∣∣Li,k = l,

k−1⋂
j=0

Gi,j


(e)
=

∫
Qk,l

[
P

(
h⊤
i,km+Li,k

(
wkm+Li,k

− ci,km+Li,k

)
≥ a1δξ

4

∣∣∣∣∣
w0:km+l

)
· P

w0:km+l

∣∣∣∣∣∣Li,k = l,

k−1⋂
j=0

Gi,j

 dw0:km+l

≤
(
1− qw

(
a1δξ

4

))
·
∫
Qk,l

P

(
w0:km+l∣∣∣∣∣∣Li,k = l,

k−1⋂
j=0

Gi,j

 dw0:km+l = 1− qw

(
a1δξ

4

)
(25)

Here, (e) is deduced by the Law of Total Probability and
the Bayes’ Rule. Specially, denote a sequence of noise by

w0:km+l := {w0, w1, · · · , wkm+l−1}

and the domain of integration in (e) by

Qk,l :=

w0:km+l such that Li,k = l and
k−1⋂
j=1

Gi,j hold


Combining inequalities (24) and (25), we can induce the
following result:

P

Gi,k

∣∣∣∣∣∣
k−1⋂
j=0

Gi,j


≤
(
1− qw

(
a1δξ

4

)) m∑
l=1

P

Li,k = l

∣∣∣∣∣∣
k−1⋂
j=0

Gi,j


=1− qw

(
a1δξ

4

)
It follows that

P

⌈ T
m ⌉−1⋂
k=0

Gi,k

 ≤
(
1− qw

(
a1δξ

4

))⌈ T
m ⌉−1

(26)
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