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Abstract— This paper studies the uncertainty set estimation
of system parameters of linear dynamical systems with bounded
disturbances, which is motivated by robust (adaptive) con-
strained control. Departing from the confidence bounds of least
square estimation from the machine-learning literature, this pa-
per focuses on a method commonly used in (robust constrained)
control literature: set membership estimation (SME). SME tends
to enjoy better empirical performance than LSE’s confidence
bounds when the system disturbances are bounded. However,
the theoretical guarantees of SME are not fully addressed
even for i.i.d. bounded disturbances. In the literature, SME’s
convergence has been proved for general convex supports of
the disturbances [1], but SME’s convergence rate assumes a
special type of disturbance support: l∞ ball [2]. The main
contribution of this paper is relaxing the assumption on the
disturbance support and establishing the convergence rates
of SME for general convex supports, which closes the gap
on the applicability of the convergence and convergence rates
results. Numerical experiments on SME and LSE’s confidence
bounds are also provided for different disturbance supports.
(The additional content in this supplementary manuscript is in
Appendix E.)

I. INTRODUCTION

Recent years have witnessed significant interests and pro-
gresses on the non-asymptotic analysis of system identifica-
tion of linear dynamical systems, e.g.

xt+1 = A∗xt +B∗ut + wt, (1)

by leveraging statistical learning tools [3], [4], [5], [6], [7],
[8]. For example, least-square estimation (LSE) is a popular
method to estimate the system parameters and has been
shown to achieve the optimal convergence rate for Gaussian
noises wt [5], [6].

However, for most safety-critical applications, it is also
crucial to characterize the uncertainties of the system pa-
rameter estimation and satisfy safety requirements (e.g. con-
straint satisfaction, stability, etc.) despite the uncertainties
[9], [10]. One possible way to achieve this is by estimating
the uncertainty sets of the system parameters and designing
robustly safe controllers to satisfy the safety requirements for
any possible system parameters in the uncertainty sets [10],
[11]. It is well-known that the size of the uncertainty sets
heavily affects the robust (constrained) control performance
since a large uncertainty set will result in over-conservative
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controllers, thus generating worse performance; while an
uncertainty set that fails to contain the true parameters may
lead to unsafe control behaviors [10], [12]. Therefore, it is
vital to reduce the size of the uncertainty sets as much as
possible while still containing the true parameters.

In the literature, there are two major methodologies for
the uncertainty set estimation for linear systems.

1) Confidence-bound-based approaches, such as the con-
fidence bounds for LSE [8], [5], which rely on the
statistical properties of wt. This methodology has been
very popular in the machine-learning community and
recent learning-based control literature [13], [14].

2) Set-membership-based approaches, which are based on
bounded disturbances but do not require any statisti-
cal properties on wt to construct an uncertainty set
containing the true parameters.This methodology has a
long history in the control literature [15], [16], [17],
[18], [19], [20] and has been a popular method in the
literature on robust adaptive control with constraints [1],
[16], [13], [21], [22], [23], [24], [25], [26], [27].

Set-membership estimation (SME) is known for generat-
ing valid uncertainty sets without statistical assumptions on
wt. But even when wt enjoys some statistical properties,
such as i.i.d., SME still tends to outperform the confidence
bounds of LSE empirically [20], [2]. The promising empiri-
cal performance of SME motivates more theoretical analysis
of SME’s convergence rates.

Perhaps surprisingly, despite the long history of SME
in the control literature, the theoretical convergence rate
analysis of SME have been limited, especially on dynamical
systems. Most of the existing convergence rate analysis
considers stochastic linear regression problems: yt = θ∗zt +
ϵt, where ϵt are i.i.d. and xt are independent of history
ϵ0, . . . , ϵt−1 [28], [29], [30], [31], [32].1 However, these
convergence rate results do not directly apply to linear dy-
namical systems because our (xt, ut) depends on the history
w0, . . . , wt−1 through (1). This issue has been overlooked
in the large body of literature on the control design based
on SME until 2019, when [34] identifies this issue and
provides the first convergence results of SME when wt is
tightly bounded by a convex compact set W. Later, [2]

1There are also theoretical analysis of SME under deterministic wt (e.g.
[33]), but SME does not converge for general deterministic sequences of wt,
so these bounds are usually converging to a neighborhood around the true
parameters. It is an interesting future work direction to study what conditions
on the deterministic sequence of wt can guarantee the convergence of SME.



established the convergence rate of SME for a specific set
W = {w : ∥w∥∞ ≤ wmax}, which is an l∞ ball, and W is
assumed to be a tight bound on the true support of wt on all
directions.

The assumption in [2] on the l∞ ball is rather restrictive
and one can easily find applications that do not satisfy this
assumption. For example, consider voltage control in distri-
bution power systems, where the disturbances on each sub-
station/nodes are the uncontrollable power injections, which
equals power generation at this substation minus the power
consumption at this substation [35]. Some substations may
have renewable energy generators, such as solar panels and
wind turbines, so the disturbances on these substations can be
positive, while the substations without generators will only
have negative disturbances. Further, different substations usu-
ally have very different magnitudes of power consumption,
e.g. a high-density residential area may consume much more
power than a low-density residential area. Therefore, the true
support of the disturbances on all substations are mostly
likely an irregular hyper-rectangle that does not center at
0, which does not satisfy the assumption in [2].

Therefore, it is important to analyze the convergence rate
of SME under more general W and bridges the gap between
the assumptions that guarantees the convergence of SME and
the ones that guarantees a convergence rate of SME.

Our contributions. This paper tackles this gap by pro-
viding convergence rates of SME for general convex and
compact W. To achieve this, we construct a unifying as-
sumption that bridges the assumptions in [34] and [2]. Our
convergence bounds are instance-specific, i.e., depending
on the probability distributions of wt, which is similar to
the previous convergence rate analysis of SME in both the
linear dynamical system and linear regression. To provide
more insight, we explain our convergence rates in several
different distributions of wt and discusses how the shape
of W affects the convergence rates. Numerical experiments
are also provided that compares SME and LSE’s confidence
bounds.

Notations. Let N be the set of all positive integers and
N0 be the set of all non-negative integers. For two matrices
M1 ∈ Rk×t,M2 ∈ Rk×r, let

(
M1 M2

)
denote the concate-

nated matrix, and the same applies to vector concatenation.
Let || · ||F denote the Frobenius norm of a matrix. ∀ p ∈ N,
denote || · ||p the p-norm of a vector. Specially, || · ||∞ is
the vector’s infinity norm. For events A and B, let A ∧ B
denote the event where both A and B hold, and let A∁ denote
the complement of A. In Rn, the closed 2-norm ball with
radius r > 0 and center x is denoted Br(x); and the 2-
norm sphere with with radius r > 0 and center x is denoted
Sr(x). For two sets C and D, we denote C ⊆ D if ∀ c ∈ C,
c ∈ D. The tilde big-O notation Õ(h(n)), denotes asymptotic
bounds ignoring logarithmic terms. In a probability space
(Ω,A,P), we say {Fi}i∈N is a filtration if ∀ i ∈ N, Fi is
a sub-σ-algebra of A and ∀ i ≤ j one has Fi ⊆ Fj . If a
statement holds with probability 1, we say it holds almost
surely, denoted a.s.. Denote the σ-algebra generated by a
collection of random variables σ{· · · }. The interior of a set

E is denoted E̊ := {e ∈ E : ∃ ϵ > 0 s.t. Bϵ(e) ⊆ E}.
F ≻ 0 denotes that a matrix F is positive definite.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation

In this paper, we consider a discrete-time linear dynamical
system with additive process noises:

xt+1 = A∗xt +B∗ut + wt, t ≥ 0 (2)

where xt ∈ Rnx , ut ∈ Rnu , and wt ∈ Rnx respectively
denote the state, the control input, and the process noise at
time t ∈ N0, and the system parameters (A∗, B∗) are un-
known. For ease of notations, we denote θ∗ =

(
A∗ B∗) ∈

Rnx×(nx+nu), zt =
(
x⊤
t u⊤

t

)⊤ ∈ Rnz , and nz = nx + nu.
Accordingly, the system (2) can be written as

xt+1 = θ∗zt + wt. (3)

This paper focuses on the estimation of the uncertainty set
of the unknown parameter θ∗. In particular, given a sequence
of data {xt, ut, xt+1}T−1

t=0 in horizon T for T ≥ 1, we aim
to construct an uncertainty set ΘT that contains the true
parameter θ∗ and is as small as possible.

The uncertainty set of the system parameters are com-
monly used in robust constrained control, such as robust
model predictive control [36], robust control barrier functions
[21], and robust system level synthesis [37], which is a
popular methodology for safety-critical applications, such
as power systems [38], robotics [39], etc. The robust con-
strained control usually aims to achieve robust constraint sat-
isfaction for any possible θ in the uncertainty set ΘT as well
as for any other system uncertainties in the corresponding
uncertainty sets. In this way, the constraints are guaranteed
to be satisfied for the true θ∗ since θ∗ ∈ ΘT . Naturally,
the size of the uncertainty set ΘT will heavily influence
the conservativeness of the robust constraints, thus having
a significant impact on the control performance. Therefore,
it is crucial to reduce the size of ΘT as much as possible
while still guaranteeing θ∗ ∈ ΘT .

Formally, we quantify the size of the uncertainty set by
its diameter as defined below.

Definition 1 (Diameter of a set of matrices). For a set
of matrices Θ ∈ Rnx×nz , we define its diameter to be
diam(Θ) := supθ1,θ2∈Θ ||θ1 − θ2||F .

B. Preliminaries on Set Membership Estimation

This paper focuses on a specific uncertainty-set-estimation
method: set membership estimation (SME). SME enjoys a
long history in the control literature and has been widely
adopted in robust adaptive control algorithm design [40].2

SME considers bounded noises wt, and leverages the
boundedness of the noises to construct the uncertainty sets.

2There is also vast literature using SME for state estimation in the output-
feedback systems [41], but this paper only studies the state-feedback case
and consider system-parameter identification.



In particular, suppose the support of wt, denoted by W, is
known, then SME constructs the uncertainty set:

ΘT =
{
θ̂ ∈ Rnx×nz : ∀ 0 ≤ t ≤ T − 1, xt+1 − θ̂zt ∈ W

}
The idea behind this algorithm is quite intuitive and straight-
forward. This algorithm has a long history and has been
introduced in multiple pieces of literature [42], [43]. It is
trivial to validate that θ∗ ∈ ΘT for any T ≥ 0 because
xt+1 − θ∗zt = wt ∈ W.

Existing literature has shown promising empirical per-
formance of SME compared with the confidence-bound-
based uncertainty set estimation, e.g. least square estimator’s
confidence bounds [20], [2]. This has attracted interests on
the theoretical analysis of SME’s convergence behaviors.
For example, [34] established the convergence of SME for
general convex set W, while [2] provided the convergence
rate for a special W: W = {w : ∥w∥∞ ≤ wmax}. This paper
tries to extend the results in [2] by considering more general
W than l∞ ball. In the next section, we will discuss the
assumptions needed by our theoretical analysis and discuss
how we relax the assumption on W.

C. Assumptions and Some Discussions on W
First, we list the assumptions consistent with [2]. Then,

we will discuss how we relax the assumption on W.
1) Standard Assumptions from the literature [2].:

Assumption 1 (i.i.d. noise). The additive noise {wt}t are
identically and independently sampled from a noise set W
with E(wt) = µ⃗w and Cov (wt) = Σw ≻ 0.

Assumption 2 (bounded zt and BMSB condition
[6]). ∃ bz such that ∀ t ≥ 0, ||zt||2

a.s.
≤ bz .

Meanwhile, given the filtration{Ft}T−1
t=1 , where

Ft := σ{w0, · · · , wt−1, z0, · · · , zt}. ∃ pz ∈ (0, 1], σz > 0
such that ∀λ ∈ {λ ∈ Rnz : ||λ||2 = 1}:

∀ t ≥ 0, P
(
|λ⊤zt+1| ≥ σz | Ft

)
≥ pz

The boundedness condition can be naturally satisfied when
applying SME to robust constrained control, where the
controllers are guaranteed to satisfy safety constraints (which
are usually bounded) for any uncertain parameters in some
priorly known initial uncertainty set. Further, the bounded zt
condition can also be achieved by applying bounded-input-
bounded-state controllers since our disturbances are bounded.

Regarding the BMSB (block-martingale small-ball) con-
dition as defined in [6], this could be achieved by adding
an i.i.d. noise with positive definite covariance to the control
policies as shown in [4].

2) Discussions on the shape of W and the tight bound
assumptions: Our analysis is based on the assumption that
W is a tight bound for the support of wt. The existing
literature [2] presents analysis when W is an ∞-norm ball. In
realistic applications, this assumption may not be sufficient
to model problems with asymmetric constraints on the noise.
For example, we consider a power supply system where each
utility has a stochastic demand in its respective interval.

In this paper, we extend the theory in [2] to scenarios
where W is a general polytope. Particularly, we describe
W by linear constraints. Each linear constraint, in the form
v⊤w ≥ h(v) for some normal vector v and h(v) ∈ R,
encodes a supporting hyperplane of W.

Definition 2 (normal vector and supporting hyperplane). For
the sake of convenience, we denote V the set of all normal
vectors of W. Formally, we have:V := {v ∈ S1(0) : ∀w0 ∈
argminw̃∈W v⊤w̃,∀w ∈ W, v⊤(w − w0) ≥ 0}.

Accordingly, the map h : S1(0) → R is defined by h(v) =
minw̃∈W v⊤w̃. The half space corresponding to (v, h(v)) is
denoted H(v) := {w ∈ Rnx : v⊤w ≥ h(v)}.

When W is compact and convex, we have the following
Proposition

Proposition 1 (properties of V and H(v)). For V and H(v),
we have: a) V = S1(0); b) ∩v∈S1(0) H(v) = W.

The proof of Proposition can be found in the Appendix.
Despite the fact that ∩v∈S1(0)H(v) = W, we do not
necessarily need every single linear constraints to determine
W. For example, it takes as few as 2nx linear constraints
to define an nx-dimensional, ∞-norm ball. However, for
W in the form of a 2-norm ball, we will need all vectors
in S1(0) to represent it. All the extra linear inequalities
(if any) resembles the redundant constraints in real-world
implementations of general convex optimization problems.
Notice that redundant linear constraints have no effect on
the algorithm outputs. Therefore, we will utilize Ṽ ⊆ V , the
non-redundant set of normal vectors in our analysis.

We do not limit the number of linear constraints used to
define W, and allow its continuation towards infinity. In the
case where we allow infinitely many linear constraints, W is
generalized to any convex, compact set.

Now, we are ready to present the tight bound assumption
on W, which is similar to the assumptions in [2], [34].

Assumption 3 (Tight bound). Let W be compact, convex,
and have a non-empty interior. And ∀ ϵ > 0, ∃ qw(ϵ) > 0
such that ∀ t ≥ 0, ∀ v ∈ V : P

(
v⊤wt − h(v) < ϵ

)
≥ qw(ϵ).

The intuitive explanation of Assumption 3 is that for
every ”thin” slice of W near its boundary, wt has a non-
vanishing probability to visit that area. Figure 1 demonstrates
the underlined ”thin slice” in 2-dimensional W:

Remark 1. The tight bound assumption guarantees that
the noise has a non-vanishing probability to be arbitrarily
close to the boundary of W. Though this assumption can be
restrictive, it is a common assumption for the convergence
analysis of SME in the literature [2], [34], [31]. The
absence of this assumption leads the SME to be only able to
converge to a neighborhood of θ∗. Meanwhile, some pieces of
recent literature (e.g. [44], [2]) tries to design SME-based
algorithms that do not require a tight bound on wt. It is
our ongoing work to establish convergence rates of those
algorithms.



(a) (b) (c) (d)

Fig. 1: This figure visualizes the definition of qw(ϵ) in both
this paper and in the literature [2] and [34]. In particular, (a)
and (b) are the ”thin” slices we consider in this paper. In
the literature [34], nevertheless, the tight bound assumption
is based on the ϵ-neighborhoods of any boundary point of
W as is indicated in (c) and (d). In other words, we consider
a looser assumption on the noise’s performance near the
boundary of W. Besides, for l∞ balls illustrated in (b), our
assumption is the same as the assumption in [2], so the
disturbances considered in [2] can be viewed as a special
case of the disturbances considered in this paper.

III. THEORETICAL DERIVATION & ANALYSIS

In this section, we first propose a non-asymptotic bound
for the SME’s diameter under the most general circumstance
where W is an arbitrary compact and convex set. For
the elegance of the analysis, we investigate into the non-
redundant normal vector set Ṽ instead of S1(0). Notice that
since ∩v∈S1(0)H(v) and ∩v∈Ṽ H(v) represent exactly the
same set W, the difference only lies within the analysis but
not in the outputs of the set membership algorithm. Before
stating the theorem, we need a constant ξ that encodes some
geometric properties of the vectors in Ṽ .

Definition 3. Let Ṽ ⊆ S1(0) be a set of normal vectors of W
such that ∩v∈Ṽ H(v) = W, define the projection constant
of Ṽ by ξ = infc∈S1(0) max

v∈ ¯̃V
v⊤c where ¯̃V denotes the

closure of Ṽ .

Lemma 1. For any Ṽ , its projection constant ξ is strictly
positive.

The proof of the Lemma can be found in the appendix.
More discussion about the property of ξ is also presented
after the main theorem is stated and proven. With ξ > 0
defined, we hereby state the theorem for general convex and
compact noise set W:

A. The Main Theorem & Its Proof

Theorem 1. ∀T > m > 0, δ > 0, one has

P (diam(ΘT ) > δ) ≤ T

m
Õ(n5/2

z )anz
2 exp(−a3m)︸ ︷︷ ︸

Term 1

+

Õ
(
(nxnz)

5/2
)
anxnz
4 [1− qw(

a1δξ

4
)]⌈(T−1)/m⌉︸ ︷︷ ︸

Term 2

(4)

Here a1 = 1
4σzpz , a2 = max{1, 64b2z

σ2p2
z
}, a3 = 1

8p
2
z , a4 =

max{1, 4bz
a1ξ

}.

With this theorem, we can estimate the asymptotic error
bound given W and the distribution of wt. We propose
the following corollaries as examples, to help the readers
understand the intuition of the rate underlined in Theorem
1:

Corollary 1. If qw(ϵ) = O(ϵ), given m ≥ O(nz + log T −
log ϵ), then with probability no less than 1− 2ϵ, one has

diam(ΘT ) ≤ Õ

(
nxnz

Tξ

)
Proof of this Corollary is in the appendix.
Notice that Corollary 1 gives a Õ(1/T ) convergence rate

if qw(ϵ) = O(ϵ), which is consistent with the convergence
rate in [2] for W being an l∞ ball. We will show in the
following examples that qw(ϵ) = O(ϵ) can be not only
satisfied by the l∞ ball, but also other polytopes. Further,
Corollary 1 indicates a better convergence rate in terms of
T compared with the convergence rate of LSE, which is
O(1/

√
T ). This is likely because SME takes advantage of

the additional assumption on bounded wt, while LSE allows
unbounded sub-Gaussian wt.

Example 1 (O(ϵ) tight-bounds). We consider wt uniformly,
identically and independently sampled from (A weighted ∞-
norm ball) W = {w ∈ Rnx : maxi∈[nx]

{
1
ai
|wi|

}
≤ 1} for

positive constants a1, · · · , anx .3 The qw(ϵ) corresponding to
this W is O(ϵ).

Example 2 (A weighted 1-norm ball). We consider wt

uniformly sampled from W = {w ∈ Rnx :
∑nx

i=1
1
ai
|wi| ≤

1} for positive constants a1, · · · , anx
.4 The volume of W is

bounded by [ (2a)
nx

nx!
, (2A)nx

nx!
], where a = mini∈[nx] ai and

A = maxi∈[nx] ai. In this case qw(ϵ) = O(ϵ).

Proofs of these two examples are available in the appendix.

B. Discussion: How ξ Influences the Error Bounds

Though well-defined, the projection constant ξ lacks in-
tuitive illustrations. In this subsection, we propose several
examples demonstrating its properties. For the most trivial
case, W = {w ∈ Rnx : ||w||∞ ≤ 1} is the unit ∞-norm ball.
In this case Ṽ = {±ei : i ∈ [nx]}, where {ei}nx

i=1 is the
canonical basis in Rnx . In this case, v⊤c is optimized when
c points at each of the vertices of W, that is: c ∈ { 1

nx
}nx

and it follows that ξ = 1√
nx

. If we plug in this ξ value into
the bound in (4), we will get the same result as in [2].

Another simple example is when W is a regular polytope
centered at the origin. The following figures are examples
in R2. Here c⊤v is optimized when c is colinear with the
angle bisector between any two ”adjacent” normal vectors.
Namely, for an N -gon, we always have ξ = cos

(
π
N

)
. Notice

that the error bound is not necessarily improved with a larger
ξ, as we notice that the scale of qw(·) also changes as

3Even though we only consider uniform distributions, but the bounds also
holds for truncated Gaussian distributions (see [2]).

4Even though we only consider uniform distributions, but the bounds also
holds for truncated Gaussian distributions (see [2]).
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Fig. 2: Examples of polytopal W in R2

we consider W with more linear constraints. Considering
the 2-dimensional polygons’ example, we denote 2bN >
0 the edge length of a regular polygon with N edges
and with all its vertices on S1(0). We then have, for wt

uniformly, identically and independently distributed on W,
∀ ϵ > 0: qw(ϵ) = ϵ(2bN+O(ϵ))

SN
, where SN is the area of

the regular N -gon inscribed in the unit circle. We have
SN ∈ [ 3

√
3

4 , π]. Notice that ξ = cos
(
π
N

)
=
√
1− b2N and

consider qw
(

a1δξ
4

)
=

a1δξ(2
√

1−ξ2+O(ξδ))

4SN
It follows that

qw

(
a1δξ

4

)
=

{
O(δ), if ξδ ≤ 2

√
1− ξ2

O(δ2), otherwise.

The example above indicates that the asymptotic estimation
of qw with respect to δ is not ”continuous”. Likewise, it
explains why the theoretical error bound performs worse
when ξ goes to 1. Namely, ∃T0 = T0(N) ∈ N such that

δ ∼


Õ

(√
nxnz

T

)
if T ≤ T0

Õ
(nxnz

T

)
if T > T0

Meanwhile, T0 is monotonically increasing with N , and is
unbounded. That is, with N → +∞, one has this threshold
T0 → +∞. For general nx, we have the following Corollary.

Corollary 2. If W = {w ∈ Rnx : ||w||2 ≤ 1} and m ≥
O(nz + log T − log ϵ), then with probability no less than
1− 2ϵ, one has diam(ΘT ) ≤ Õ

((
nxnz

T

)1/nx
)

.

The proof of this Corollary is in the appendix.
Although theoretical derivations show that the error bound

for W in the form of a 2-norm ball is much worse compared
to the LSE’s bound O(1/

√
T ) for large nx, yet in numerical

experiments no significant distinction in these two cases’
performance is observed (see Figure 4 for nx = 10). This
may suggest the poor dependence on T is a proof-artifact.
Improving this convergence rate is our ongoing work.

IV. PROOF SKETCH OF THEOREM 1

The proof of Theorem 1 is inspired by the proof in [2].
Notice that the estimation error is denoted γ := θ̂ − θ∗.
∀ t ≥ 0, one has xt+1 − θ̂zt = wt − (θ̂ − θ∗)zt. We define
the error set by

ΓT := ∩T−1
t=0 {γ : wt − γzt ∈ W}

Notice that ΓT is attained by translating ΘT by −θ∗, which
is an isometry. It follows that diam(ΓT ) = diam(ΘT ). In

the rest of this paper, we will focus on diam(ΓT ). Next, we
define two events as follows:

Definition 4. Define the event in which there exists an error
estimator with large diameter by

E1 :=

{
∃ γ ∈ ΓT s.t. ||γ||F ≥ δ

2

}
Define the event in which we have persistence excitation by

E2 :=

{
1

m

m∑
s=1

zkm+sz
⊤
km+s ⪰ a21Inz

, ∀ 0 ≤ k ≤ T

m
− 1

}
With the above two events defined, we can divide the event

{diam(ΓT ) > δ} by the following.

P (diam(ΓT ) > δ) ≤ P (E1) = P
(
(E1 ∩ E2) ⊔ (E1 ∩ EC

2 )
)

≤ P (E1 ∩ E2) + P
(
EC
2

)
Notice that the bound on P

(
EC
2

)
follows directly from

Lemma 1 in [2] as stated below.

Lemma 2 (Lemma 1 in [2]).

P
(
EC
2

)
≤ T

m
Õ(n5/2

z )anz
2 exp(−a3m)

The following Lemma proposes an upper bound for the
other term.

Lemma 3.

P (E1 ∩ E2) ≤ Õ
(
(nxnz)

5/2
)
anxnz
4 [1−qw(

a1δξ

4
)]⌈(T−1)/m⌉

A complete proof of Lemma 3 can be found in the
Appendix (part E). The basic idea of this proof is ana-
logical to its ∞-norm constrained counterpart (Lemma 2
in [2]). The key is to design a sequence of events whose
probability is easy to represent. Then we use these new
events to cover each of the E1,i ∩ E2 and derive the upper
bound. Specially, instead of tracking the greatest ∞-norm of
{wt − γzt}(k+1)m

t=km+1 and bounding it by wmax, we now track
the minimal projection denoted v⊤i,km+Li,k

(γzkm+Li,k
), and

bound it below by h(vi,km+Li,k
). Notice that in [2] the

bound with wmax is in both directions due to the symmetry.
In this paper’s case, however, we only have one side of
such inequalities. Without the introduction of the projection
constant ξ, it is hard to derive the upper bound. Another
noticeable difference is: we now compare the projection
gap vi,km+Li,k

wkm+Li,k
− h(vi,km+Li,k

) with a1δξ
4 . The

projection constant ξ exists in the new derivation because
of the properties of the normal vector v.

Consequently, Theorem 1 is directly implied by combining
Lemma 2 and Lemma 3.

V. NUMERICAL EXPERIMENTS

In this section, we implement several numerical exper-
iments of the set membership algorithm. We propose the
descending curves of the uncertainty set’s diameter as we
feed more data to the model. We also present a compari-
son between the SME diameter and that of a least square
estimator’s 95%-confidence region.



To assess the performance of SME, we consider a sys-
tem of nx = 10-dimensions. The ground-truth parameters
A∗, B∗ are randomly generated and rescaled to be stable.
We consider wt uniformly sampled from the noise set W in
two forms: W1 = {w ∈ R10 : maxi∈[nx]

{
1
ai
|wi|

}
≤ 1},

a weighted ∞-norm ball/hyper-rectangle, and W2 = {w ∈
R10 : ||w||2 ≤ 1}, a 2-norm ball. For each of W1,W2, we
generate a sequence of data {xt}Tt=0 with i.i.d. controller
u ∈ R10 that follows the same distribution as wt does.
For each case, we plot the descending curve of diam(ΘT )
along with the estimated error bound for the LSE 95%-
confidence region’s diameter. We adapt to the error bound
proposed by [45] for the LSE 95%-confidence region. For
the upper bound S ≥ ||θ∗||F , we take the exact lower bound
(i.e. we set S = ||θ∗||F ). And for the proxy variance, we
refer to [46] and use the lower bound L ≥ Var(wi). For
W1, L =

√
10
12 ; for W2, L =

maxi∈[nx]{ai}√
3

. The (1 − δ)

value is set to be 0.95 for a bound of the 95%-confidence
region. It is worth mentioning that our choices of parameters
are carefully chosen to improve the performance of the LSE
bounds, for example, the LSE’s confidence bound increases
with S and L so we choose the smallest possible values
for S and L. We also tune the parameters of λ for better
performance of LSE. Meanwhile, we apply entry-wise outer
approximation for the set membership estimation for ease of
computation. Therefore, the real SME diameters can be less
than the plotted values.

Fig. 3: Convergence rates of uncertainty sets of SME and
LSE’s confidence bounds when W = W1 is a weighted l∞
ball (hyper-rectangle).

Figure 3 plots the diameter of the uncertainty sets gener-
ated by SME and LSE’s 95% confidence bounds when the
disturbance wt is uniformly distributed on W1. It can be ob-
served that SME significantly outperforms LSE’s confidence
bounds, which is consistent with our theoretical insights in
Corollary 1.

Figure 4 plots the diameter of the uncertainty sets when wt

is uniformly distributed on W2. Notice that the gaps between
SME and LSE’s confidence bounds are much smaller. How-
ever, the rates of convergence are rather similar. This is quite
interesting because our theoretical convergence rate for the l2

Fig. 4: Convergence rates of uncertainty sets of SME and
LSE’s confidence bounds when W = W2 is a 2-norm ball.

ball is much worse than the theoretical bound of LSE. This
mismatch between theory and simulation motivates more
efforts on improving the convergence rates of SME, which
is our ongoing work.

More simulation can be found in our supplementary [47].

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we propose a non-asymptotic analysis for
the diameter of the set membership estimator using data
generated from an unknown linear system whose noise is
i.i.d. generated from a convex and compact set W. We also
provide error bound estimations on the SME and numerical
experiments comparing the performance of SME with that of
LSE. The bounds are based on our current best knowledge in
this field and we expect to improve this project in the future.
We are interested in the following directions: 1) improving
the convergence rate on 2-norm ball; 2) seeking for a non-
stochastic representation for the error bound; 3) analyzing
the computational complexity of set membership; 4) investi-
gating SME’s performance when the tight-bound assumption
is absent; 5) assessing set membership’s performance with
robust adaptive model predictive control/distributionally ro-
bust control; 6) estimating the volume of the SME instead
of diameter; 7) discovering the fundamental limit of this
algorithm; 8) adapting the theory to non-linear systems, 9)
comparing with the credible regions of Bayesian approaches,
such as Gaussian processes and Thompson sampling, etc.

APPENDIX

A. Proof of Proposition 1

a) Consider any s ∈ S1(0). ∀w0 ∈ argminw̃∈W s⊤w̃
and ∀w ∈ W, one has s⊤(w − w0) = s⊤w −
minw̃∈W s⊤w̃ ≥ 0. Therefore, S1(0) ⊆ V . The other
side of inclusion is trivial.

b) To show this, we prove by contradiction. Suppose there
exists some w∗ ∈ ∩v∈S1(0) such that w∗ ∈ W∁. By the
strong convexity of the 2-norm, ∃!w0 ∈ ∂W such that
||w∗ − w0||2 = minw̃∈∂W ||w∗ − w̃||2 > 0. Consider



v∗ := − w∗−w0

||w∗−w0||2 . Since W is convex. By the support-
ing hyperplane theorem, w0 ∈ argmaxw̃∈W(v∗)⊤w̃. It
follows that (v∗)⊤w∗ = (v∗)⊤w0 − ||w∗ − w0||2 <
minw̃∈W(v∗)⊤w̃ and we have a contradiction against
the assumption that w∗ ∈ ∩v∈S1(0)H(v). The other side
of implication is trivial.

B. Proof of Lemma 1

Since ¯̃V is compact and the inner product map v → v⊤c is
continuous, then max

v∈ ¯̃V
v⊤c is well-defined. Next we proof

by contradiction: suppose that infc∈S1(0) max
v∈ ¯̃V

v⊤c <

0. Namely, ∀ ϵ > 0, ∀n ∈ N, ∃ c(n) ∈ S1(0) s.t.
max

v∈ ¯̃V
v⊤c(n) ≤ ϵ

n . Consider w0 ∈ W such that ∀ v ∈ Ṽ ,
v⊤w0 > h(v) + ϵ, we then have v⊤(w0 − nc(n)) ≥ h(v).
Notice that c(n) ∈ S1(0). Then {w0 −nc(n)}n≥0 ⊆ W. This
cannot hold since we assumed that W is compact. □

C. Proofs of Corollaries 1 & 2

a) Corollary 2: In this case we have Ṽ = S1(0), and it
follows that ξ = 1. We first claim that Term 1 ≤ ϵ. To show
this, notice that

m ≥ O(nz + log T − log ϵ)

=
1

a3

[
O((log a2)nz +

5

2
log nz +O(log T )−O(log ϵ)

]
It follows that exp(−a3m) ≤ a−nz

2 n−5/2
z ϵ

T And therefore,
Term 1 ≤ ϵ/m ≤ ϵ Next we let Term 2 = ϵ Denoting the
volume of a spherical cap with height ϵ in an nx-dimensional
unit ball to be V nx

ϵ , we notice that V nx
ϵ ≥ πnx/2ϵnx

2Γ(nx/2+1) . For a
uniform distribution, the probability that wt falls in this cap
is V nx

ϵ

Vnx
where Vnx

is the volume of the nx-dimensional unit

ball. And Vn = π
nx
2

Γ(nx
2 +1)

. We then have:V
nx
ϵ

Vnx
≥ O (ϵnx) We

can then take qw(ϵ) = O (ϵnx). It follows that

δnx = O((
4

a1
)nx)

{
1− [ϵÕ((nxnz)

5/2)a−nxnz
4 ]m/T

}
≤ O((

4

a1
)nx

m

T
Õ(nxnz)

= Õ

((
4

a1

)nx

· nxnz

T

)
The inequality comes from ∀x, x − 1 ≥ log x. Therefore,
δ ≤ Õ

((
nxnz

T

)1/nx
)

.
b) Corollary 1: The proof is similar to that for

Corollary 2. Since Term 1 in Theorem 4 is the same
as that in Theorem 1, we can show that Term 1 ≤ ϵ.
Now, letting Term 2 = ϵ, one has O

(
a1δξ
4

)
= 1 −[

ϵÕ
(
(nxnz)

−5/2
)
a−nxnz
4

]m/T

. Using the x − 1 ≥ log x

trick again, we have δ ≤ Õ
(

nxnz

Tξ

)
.

D. Proofs of Examples 1 & 2

a) Example 1: Alternatively, we can write W =
[−a1, a1]× · · · × [−anx

, anx
]. A valid set of normal vectors

V can be V = {±ei}, where ei is the i-th vector in
the canonical basis of Rn. Without loss of generality, we

consider wt ∈ ·ϵ = [a1 − ϵ, a1] × [−a2, a2] × [−anx
, anx

].
Namely, when wt is sampled in a thin slice near a certain
facet. Then P(wt ∈ ∆ϵ) = Volume of ∆ϵ

Volume of W =
2nx−1ϵ

∏nx
i=2 ai

2nx
∏nx

i=1 ai
=

ϵ
2a1

= O(ϵ).
b) Example 2: The volume of the ball

Ŵ = {w ∈ Rnx :
∑nx

i=1
1
ai
|wi| ≤ 1 − ϵ} is

accordingly bounded by [(1− ϵ)nx (2a)nx

nx!
, (1− ϵ)nx (2A)nx

nx!
].

It follows that 2nxqw(ϵ) ≈ Volume of W\Ŵ
Volume of W ∈[

[1− (1− ϵ)nx ]
(
a
A

)nx
, [1− (1− ϵ)nx ]

(
A
a

)nx
]
. It

follows that
(

a
2A

)nx ≤ qw(ϵ)
1−(1−ϵ)nx ≤

(
A
2a

)nx Notice
that 1− (1− ϵ)nx ∼ O(ϵ). Thus, qw(ϵ) is also O(ϵ).

E. Complete Proof of Lemma 3

For the (nx×nz)-dimensional unit Frobenius-norm sphere
SF1 (0) := {γ ∈ Rnx×nz : ||γ||F = 1}, we consider
covering it with smaller balls with radius ϵγ = 1

a4
, and

denote the corresponding ϵγ-net to be M := {γi}
vγ
i=1.

Here vγ is the number of small ϵγ-balls required to cover
the sphere so that ∀ γ ∈ SF1 (0), ∃γi ∈ M such that
||γi − γ||F ≤ 2ϵγ . For the theory of covering num-
ber, we refer the readers to [48], [49] and Appendix D.1
in [2]. On the other hand, we define the stopping time
Li,k := min {m+ 1,min {l ≥ 1 : ||γizkm+l||2 ≥ a1}}.
Since zt is Ft-measurable and {Li,k = ℓ} ∈ Fkm+ℓ,
then vi,t is Ft-measurable, and Li,k a stopping time with
respect to the original filtration. ∀ t ≥ 0, define the
adapted process {vi,t}t≥0: vi,t := argmaxv∈cl(Ṽ ) v

⊤(γizt).
Here cl(Ṽ ) denotes the closure of Ṽ . Notice that since
cl(Ṽ ) is compact, then the maximum is well-defined.
However, the maximizer may not be unique. We can
take arbitrary one of them. Accordingly, we define
E1,i =

{
∃ γ ∈ ΓT : v⊤i,km+Li,k

(γzkm+Li,k
) ≥ a1δξ

4 , ∀ k
}

.
We want to cover the event E1 ∩ E2 with these events. We
have the following technical Lemma:

Lemma 4.

P (E1 ∩ E2) ≤
vγ∑
i=1

P (E1,i ∩ E2)

Proof of Lemma 4. By E2, choosing arbitrary γi ∈ M, we
have: 1

m

∑m
s=1 ||γizkm+s||22 ≥ a21. By pigeonhole principle:

maxs∈{1,··· ,m} ||γizkm+s||2 ≥ a1. It follows that Li,k ≤ m
and ||γizkm+Li,k

||2 ≥ a1.
By the ball-covering theory, there ∃γi ∈ M such that

||γ − γi||F ≤ 2ϵγ . Intuitively, we can check the projection
of γz on vi,km+Li,k

. Namely, for any γ ∈ S̄1(0):

v⊤i,km+Li,k
(γzkm+Li,k

) = v⊤i,km+Li,k
(γizkm+Li,k

)

− v⊤i,km+Li,k
((γi − γ)zkm+Li,k

)

≥ a1ξ − ||(γi − γ)zkm+Li,k
||2

≥ a1ξ − ||γi − γ||2︸ ︷︷ ︸
≤2ϵγ

||zkm+Li,k
||2︸ ︷︷ ︸

≤bz

≥ a1ξ − 2ϵγbz ≥ a1ξ

2



Notice that ∀ γ ∈ Rnx×nz , v⊤i,km+Li,k
(γzkm+Li,k

) ≥
a1||γ||F ξ

2 . Given E1, we have: v⊤i,km+Li,k
(γzkm+Li,k

) ≥
a1ξ
2 · ||γ||F > a1δξ

4 . That is, E1 ∩ E2 ⊆ ∪vγ
i=1(E1,i ∩ E2),

from which we can deduce Lemma 4.

However, it is still difficult to deal with E1,i. We will need
a further step of covering. We know that γ := θ̂− θ∗. Thus,
wt − γzt = xt+1 − θ̂zt ∈ W. It follows that:

∀ v ∈ Ṽ , v⊤(wt − γzt) ≥ h(v)

This is also true at the stopping time Li,k. That is:

v⊤i,km+Li,k
wkm+Li,k

− h(vi,km+Li,k
)

≥v⊤i,km+Li,k
(γzkm+Li,k

)

∀ k ≥ 0, define

Gi,k ={
(
v⊤i,km+Li,k

wkm+Li,k
− h(vi,km+Li,k

) ≥ a1δξ

4

)
∧

(
1

m

m∑
s=1

zkm+sz
⊤
km+s ⪰ a21Inz

)
}

For {Gi,k}k, we have the following Lemma:

Lemma 5.

P (E1,i ∩ E2) = P (Gi,0)

⌈T/m⌉−1∏
t=1

P
(
Gi,t | ∩t−1

k=0Gi,k

)
Proof of Lemma 5. By E1,i ∩ E2 holds, ∃ γ ∈ ΓT such that

v⊤i,km+Li,k
(γzkm+Li,k

) ≥ a1δξ

4

which implies:

v⊤i,km+Li,k
wkm+Li,k

− h(vi,km+Li,k
) ≥ a1δξ

4

which is Gi,k exactly. Therefore, E1,i ∩ E2 ⊆ ∩T/m
k=1 Gi,k.

Consequently,

P (E1,i ∩ E2) ≤ P
(
∩⌈T/m⌉−1
k=1 Gi,k

)
= P (Gi,0)

⌈T/m⌉−1∏
t=1

P
(
Gi,t | ∩t−1

k=0Gi,k

)

With Lemma 5, we can proceed to find a bound for the
probability of ∩Gi,k. For the sake of convenience, we now
denote the events:

A(i, k,m,Li,k) := {(Li,k ≤ m)∧(
v⊤i,km+Li,k

wkm+Li,k
− h(vi,km+Li,k

) ≥ a1δξ

4

)
}

Consider an arbitrary factor of the consecutive product

P
(
Gi,k | ∩k−1

s=0Gi,s

)
= P

(
A(i, k,m,Li,k) | ∩k−1

s=0Gi,s

)
=

m∑
l=1

P
(
A(i, k,m, l), Li,k = l | ∩k−1

s=0Gi,s

)
=

m∑
l=1

[
P
(
A(i, k,m, l) | ∩k−1

s=0Gi,s, Li,k = l
)

P
(
Li,k = l | ∩k−1

s=0Gi,s

)]
The second equation comes from the law of total probability,
the third is deduced by the Bayes’ law. Let {vm}km+l

m=0 be a
sequence of realizations of wt. Notice that ∀ l ∈ {1, · · · ,m}.
Taking integrals on the realizations, we have:

P
(
A(i, k,m, l) | ∩k−1

s=0Gi,s, Li,k = l
)

=

∫
v0:km+l

P
(
A(i, k,m, l) | ∩k−1

s=0Gi,s, Li,k = l
)
dv0:km+l

=

∫
v0:km+l

[P (A(i, k,m, l) | w0:km+l = v0:km+l)

P
(
w0:km+l = v0:km+l | Li,k = l, ∩k−1

s=0Gi,s

)]
dv0:km+l

≤ sup [P (A(i, k,m, l) | w0:km+l = v0:km+l)]

Notice that by the assumptions:

v⊤i,km+lwkm+l − hi,km+l ≥
a1δξ

4

And it follows that:

P (A(i, k,m, l) | v0:km+l) ≤ 1− qw(
a1δξ

4
)

which leads to

P
(
Gi,k | ∩k−1

l=0 Gi,l

)
≤ 1− qw(

a1δξ

4
)

With an upper bound found for all components, we have:

P (E1 ∩ E2) =
vγ∑
i=1

P (E1,i ∩ E2) ≤
vγ∑
i=1

P
(
P(∩T/m−1

k=0 Gi,k)
)

= P (Gi,0)

⌈T/m⌉−1∏
t=1

P
(
Gi,t | ∩t−1

k=0Gi,k

)
≤

vγ∑
i=1

[1− qw(
a1δξ

4
)]⌈(T−1)/m⌉

≤ Õ((nxnz)
5/2)anxnz

4 [1− qw(
a1δξ

4
)]⌈(T−1)/m⌉

This finishes the proof of Lemma 3.
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